Efficient matrix rank computation with application to the study of strongly regular graphs
暂无分享,去创建一个
[1] Qing Xiang,et al. Recent progress in algebraic design theory , 2005, Finite Fields Their Appl..
[2] Erich Kaltofen. An output-sensitive variant of the baby steps/giant steps determinant algorithm , 2002, ISSAC '02.
[3] Cunsheng Ding,et al. A family of skew Hadamard difference sets , 2006, J. Comb. Theory, Ser. A.
[4] A. Brouwer,et al. On the p-Rank of the Adjacency Matrices of Strongly Regular Graphs , 1992 .
[5] Erich Kaltofen,et al. LINBOX: A GENERIC LIBRARY FOR EXACT LINEAR ALGEBRA , 2002 .
[6] Erich Kaltofen,et al. On Wiedemann's Method of Solving Sparse Linear Systems , 1991, AAECC.
[7] B. David Saunders,et al. Certifying inconsistency of sparse linear systems , 1997, SIGS.
[8] Gilles Villard,et al. Regular versus Irregular Problems and Algorithms , 1995, IRREGULAR.
[9] William J. Turner. Preconditioners for singular black box matrices , 2005, ISSAC '05.
[10] Siu Lun Ma,et al. A survey of partial difference sets , 1994, Des. Codes Cryptogr..
[11] Douglas H. Wiedemann. Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.
[12] Jean-Guillaume Dumas,et al. Computing the Rank of Large Sparse Matrices over Finite Fields , 2002 .
[13] Jean-Guillaume Dumas,et al. FFPACK: finite field linear algebra package , 2004, ISSAC '04.
[14] William J. Turner,et al. A block Wiedemann rank algorithm , 2006, ISSAC '06.
[15] Jean-Guillaume Dumas,et al. Finite field linear algebra subroutines , 2002, ISSAC '02.
[16] Jean-Guillaume Dumas,et al. Integer Smith form via the valence: experience with large sparse matrices from homology , 2000, ISSAC.
[17] B. D. Saunders,et al. Efficient matrix preconditioners for black box linear algebra , 2002 .
[18] Andrew M. Odlyzko,et al. Solving Large Sparse Linear Systems over Finite Fields , 1990, CRYPTO.