Development and Implementation of a Transport Method for the Transport and Reaction Simulation Engine (TaRSE) based on the Godunov-Mixed Finite Element Method

[1]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[2]  Jean E. Roberts,et al.  A unified physical presentation of mixed, mixed-hybrid finite elements and standard finite difference approximations for the determination of velocities in waterflow problems , 1991 .

[3]  C. Dawson Godunov-mixed methods for advective flow problems in one space dimension , 1991 .

[4]  Clint Dawson,et al.  Godunov–mixed methods for immiscible displacement , 1990 .

[5]  Eric F. Wood,et al.  Mixed finite element simulation of saturated groundwater flow using a multigrid accelerated domain decomposition technique , 1993 .

[6]  T. F. Russell,et al.  Time Stepping Along Characteristics with Incomplete Iteration for a Galerkin Approximation of Miscible Displacement in Porous Media , 1985 .

[7]  T. F. Russell,et al.  Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics , 1984 .

[8]  T. F. Russell,et al.  A Finite‐Volume ELLAM for Three‐Dimensional Solute‐Transport Modeling , 2003, Ground water.

[9]  A. Nir,et al.  Effects of Boundary Conditions of Models on Tracer Distribution in Flow through Porous Mediums , 1969 .

[10]  W. J. Alves,et al.  Analytical solutions of the one-dimensional convective-dispersive solute transport equation , 1982 .

[11]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[12]  T. F. Russell,et al.  NUMERICAL METHODS FOR CONVECTION-DOMINATED DIFFUSION PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE ELEMENT OR FINITE DIFFERENCE PROCEDURES* , 1982 .

[13]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[14]  Xu-Dong Liu,et al.  A maximum principle satisfying modification of triangle based adaptive stencils for the solution of scalar hyperbolic conservation laws , 1993 .

[15]  J. Bear Hydraulics of Groundwater , 1979 .

[16]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[17]  Luca Bergamaschi,et al.  A Time-Splitting Technique for the Advection-Dispersion Equation in Groundwater , 2000 .

[18]  T. F. Russell,et al.  An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation , 1990 .

[19]  George F. Pinder,et al.  Simulation of two‐dimensional contaminant transport with isoparametric Hermitian finite elements , 1977 .

[20]  C. Dawson Godunov-mixed methods for advection-diffusion equations in multidimensions , 1993 .

[21]  G. R. Shubin,et al.  An unsplit, higher order Godunov method for scalar conservation laws in multiple dimensions , 1988 .

[22]  Richard W. Healy,et al.  A finite‐volume Eulerian‐Lagrangian Localized Adjoint Method for solution of the advection‐dispersion equation , 1993 .

[23]  S. P. Neuman,et al.  A Eulerian-Lagrangian numerical scheme for the dispersion-convection equation using conjugate space-time grids , 1981 .

[24]  W. G. Gray,et al.  Finite Element Simulation in Surface and Subsurface Hydrology , 1977 .

[25]  M. Wheeler,et al.  A characteristics-mixed finite element method for advection-dominated transport problems , 1995 .

[26]  J. Jawitz,et al.  Modeling two-dimensional reactive transport using a Godunov-mixed finite element method , 2007 .

[27]  A. M. Wasantha Lal,et al.  Case Study: Model to Simulate Regional Flow in South Florida , 2005 .

[28]  Richard W. Healy,et al.  Solution of the advection-dispersion equation in two dimensions by a finite-volume Eulerian-Lagrangian localized adjoint method , 1998 .

[29]  Luca Bergamaschi,et al.  Godunov Mixed Methods on Triangular Grids for Advection–Dispersion Equations , 2002 .

[30]  G. Pinder,et al.  A Numerical Technique for Calculating the Transient Position of the Saltwater Front , 1970 .

[31]  T. F. Russell,et al.  An overview of research on Eulerian-Lagrangian localized adjoint methods (ELLAM). , 2002 .