Strain-tunable electronic, elastic, and optical properties of CaI2 monolayer: first-principles study

ABSTRACT The effects of biaxial strain on the electronic structure and the elastic and optical properties of monolayer CaI2 were studied using first-principles calculations. The two-dimensional (2D) equation of state for monolayer CaI2 as fit in a relative area of 80–120% is more accurate. The band gap can be tuned under strain and reached a maximum at a tensile strain of 4%. Under compressive strains, the absorption spectrum showed a significant red shift at higher strains. The static reflectance and static refractive index decreased in the strain range of −10% to 10%.

[1]  H. Jappor,et al.  Tuning the electronic structure of 2D materials by strain and external electric field: Case of GeI2 monolayer , 2019, Chemical Physics.

[2]  S. Parkin,et al.  Enhanced Spontaneous Polarization in Ultrathin SnTe Films with Layered Antipolar Structure , 2018, Advanced materials.

[3]  Benhu Zhou,et al.  Chiral filtration-induced spin/valley polarization in silicene line defects , 2018 .

[4]  Minglei Sun,et al.  MoS2/ZnO van der Waals heterostructure as a high-efficiency water splitting photocatalyst: a first-principles study. , 2018, Physical chemistry chemical physics : PCCP.

[5]  Dianyuan Fan,et al.  Broadband Nonlinear Optical Response in Few‐Layer Antimonene and Antimonene Quantum Dots: A Promising Optical Kerr Media with Enhanced Stability , 2017 .

[6]  Yury Gogotsi,et al.  2D metal carbides and nitrides (MXenes) for energy storage , 2017 .

[7]  A. Du,et al.  2D MXenes: A New Family of Promising Catalysts for the Hydrogen Evolution Reaction , 2017 .

[8]  Minglei Sun,et al.  Electronic properties of Janus silicene: new direct band gap semiconductors , 2016 .

[9]  Hui Liu,et al.  A class of monolayer metal halogenides MX2: Electronic structures and band alignments , 2016 .

[10]  M. Lemme,et al.  Graphene and Two-Dimensional Materials for Optoelectronic Applications , 2016 .

[11]  Heyuan Zhu,et al.  The electronic, optical, and thermodynamic properties of borophene from first-principles calculations , 2016, 1601.00140.

[12]  W. Duan,et al.  Single layer lead iodide: computational exploration of structural, electronic and optical properties, strain induced band modulation and the role of spin-orbital-coupling. , 2015, Nanoscale.

[13]  B. Hong,et al.  Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials , 2015 .

[14]  Franccois-Xavier Coudert,et al.  Necessary and Sufficient Elastic Stability Conditions in Various Crystal Systems , 2014, 1410.0065.

[15]  Jinlong Yang,et al.  Unusual Metallic Microporous Boron Nitride Networks , 2013 .

[16]  J. Coleman,et al.  Liquid Exfoliation of Layered Materials , 2013, Science.

[17]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[18]  Hongzheng Chen,et al.  Graphene-like two-dimensional materials. , 2013, Chemical reviews.

[19]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[20]  R. E. Mapasha,et al.  Mechanical properties of graphene and boronitrene , 2012 .

[21]  Suvranu De,et al.  Mechanical properties of the hexagonal boron nitride monolayer: Ab initio study , 2011, 1107.1453.

[22]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[23]  E. Deligoz,et al.  Structural, elastic, and lattice dynamical properties of Germanium diiodide (GeI2) , 2010 .

[24]  David J. Singh Structure and optical properties of high light output halide scintillators , 2010, 1008.2175.

[25]  Li Shi,et al.  Two-Dimensional Phonon Transport in Supported Graphene , 2010, Science.

[26]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[27]  J. Zhang,et al.  Synthesis and characterization of PbI2 polycrystals , 2006 .

[28]  F. Bechstedt,et al.  Linear optical properties in the projector-augmented wave methodology , 2006 .

[29]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[30]  Michael A Brogan,et al.  Magnesium diiodide, MgI2. , 2003, Acta crystallographica. Section C, Crystal structure communications.

[31]  B. Johansson,et al.  Electronic structure, chemical bonding, and optical properties of ferroelectric and antiferroelectric NaNO2 , 1999 .

[32]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[33]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[34]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[35]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[36]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[37]  R. Hofstadter,et al.  CaI2 and CaI2(Eu) Scintillation Crystals , 1964 .

[38]  R. Bozorth THE CRYSTAL STRUCTURE OF CADMIUM IODIDE , 1922 .

[39]  Qi-Feng Chen,et al.  Strain-modulated mechanical, electronic, and thermal transport properties of two-dimensional PdS2 from first-principles investigations , 2018, Applied Physics A.

[40]  Srivastava,et al.  Electronic structure , 2001, Physics Subject Headings (PhySH).

[41]  Congyan Zhang,et al.  Theoretical prediction of sandwiched two-dimensional phosphide binary compounds sheets with tunable bandgaps and anisotropic physical properties. , 2018, Nanotechnology.

[42]  M. Einarsrud,et al.  Structure and stability of solid and molten complexes in the MgCl2-AlCl3 system , 1987 .

[43]  H. M. Powell,et al.  35. The structure of germanous iodide , 1938 .