Canards for a reduction of the Hodgkin-Huxley equations

This paper shows that canards, which are periodic orbits for which the trajectory follows both the attracting and repelling part of a slow manifold, can exist for a two-dimensional reduction of the Hodgkin-Huxley equations. Such canards are associated with a dramatic change in the properties of the periodic orbit within a very narrow interval of a control parameter. By smoothly connecting stable and unstable manifolds in an asymptotic limit, we predict with great accuracy the parameter value at which the canards exist for this system. This illustrates the power of using singular perturbation theory to understand the dynamical properties of realistic biological systems.

[1]  P. Szmolyan,et al.  Canards in R3 , 2001 .

[2]  É. Benoît Chasse au canard , 1980 .

[3]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[4]  Jianzhong Su,et al.  Analysis of a Canard Mechanism by Which Excitatory Synaptic Coupling Can Synchronize Neurons at Low Firing Frequencies , 2004, SIAM J. Appl. Math..

[5]  J. Rinzel,et al.  Numerical calculation of stable and unstable periodic solutions to the Hodgkin-Huxley equations , 1980 .

[6]  James P. Keener,et al.  Mathematical physiology , 1998 .

[7]  S. Baer,et al.  Sungular hopf bifurcation to relaxation oscillations , 1986 .

[8]  T. Erneux,et al.  Imperfect bifurcation with a slowly-varying control parameter , 1986 .

[9]  Morten Brøns,et al.  A symptotic analysis of canards in the EOE equations and the role of the inflection line , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[10]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[11]  K. Bar-Eli,et al.  Canard explosion and excitation in a model of the Belousov-Zhabotinskii reaction , 1991 .

[12]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[13]  John Guckenheimer,et al.  Numerical Computation of Canards , 2000, Int. J. Bifurc. Chaos.

[14]  M. Krupa,et al.  Relaxation Oscillation and Canard Explosion , 2001 .

[15]  Wiktor Eckhaus,et al.  Relaxation oscillations including a standard chase on French ducks , 1983 .

[16]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[17]  J. Rinzel Excitation dynamics: insights from simplified membrane models. , 1985, Federation proceedings.

[18]  J. Callot,et al.  Chasse au canard , 1977 .

[19]  Jeff Moehlis,et al.  Canards in a Surface Oxidation Reaction , 2002, J. Nonlinear Sci..

[20]  S. Wiggins Normally Hyperbolic Invariant Manifolds in Dynamical Systems , 1994 .

[21]  S. Finkbeiner Mathematical Aspects of Hodgkin-Huxley Neural Theory , 1988, The Yale Journal of Biology and Medicine.