Nonlinear evolution of f ( R ) cosmologies. III. Halo statistics

The statistical properties of dark matter halos, the building blocks of cosmological observables associated with structure in the Universe, offer many opportunities to test models for cosmic acceleration, especially those that seek to modify gravitational forces. We study the abundance, bias, and profiles of halos in cosmological simulations for one such model: the modified action f(R) theory. The effects of f(R) modified gravity can be separated into a large- and small-field limit. In the large-field limit, which is accessible to current observations, enhanced gravitational forces raise the abundance of rare massive halos and decrease their bias but leave their (lensing) mass profiles largely unchanged. This regime is well described by scaling relations based on a modification of spherical collapse calculations. In the small-field limit, the enhancement of the gravitational force is suppressed inside halos and the effects on halo properties are substantially reduced for the most massive halos. Nonetheless, the scaling relations still retain limited applicability for the purpose of establishing conservative upper limits on the modification to gravity.

[1]  Joel R. Primack,et al.  Dynamical effects of the cosmological constant. , 1991 .

[2]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[3]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[4]  I. Sawicki,et al.  A Parameterized Post-Friedmann Framework for Modified Gravity , 2007, 0708.1190.

[5]  J. Khoury,et al.  Chameleon Cosmology , 2003, astro-ph/0309411.

[6]  Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics , 1973 .

[7]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[8]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[9]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999 .

[10]  Constraining f ( R ) gravity as a scalar-tensor theory , 2006, astro-ph/0612569.

[11]  Quintessence without scalar fields , 2003, astro-ph/0303041.

[12]  Ravi Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[13]  The Newtonian limit at intermediate energies , 2005, gr-qc/0507039.

[14]  Wayne Hu,et al.  Sample Variance Considerations for Cluster Surveys , 2002 .

[15]  M. Lima,et al.  N on-linear evolution of f(R) cosm ologies II:power spectrum , 2008, 0807.2462.

[16]  Douglas H. Rudd,et al.  The Astrophysical Journal, submitted Preprint typeset using L ATEX style emulateapj v. 08/29/06 EFFECTS OF BARYONS AND DISSIPATION ON THE MATTER POWER SPECTRUM , 2007 .

[17]  Mark Trodden,et al.  Is Cosmic Speed-Up Due to New Gravitational Physics? , 2003, astro-ph/0306438.

[18]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[19]  Matemática,et al.  Society for Industrial and Applied Mathematics , 2010 .

[20]  Wayne Hu,et al.  Models of f(R) Cosmic Acceleration that Evade Solar-System Tests , 2007, 0705.1158.

[21]  S. McCormick,et al.  A multigrid tutorial (2nd ed.) , 2000 .

[22]  K. V. Acoleyen,et al.  f(R) actions, cosmic acceleration and local tests of gravity , 2006, gr-qc/0611127.

[23]  S. Nojiri,et al.  Modified gravity with negative and positive powers of the curvature: Unification of the inflation and of the cosmic acceleration , 2003, hep-th/0307288.

[24]  H. Oyaizu,et al.  Non-linear evolution of f(R) cosmologies I: methodology , 2008, 0807.2449.

[25]  A. Zentner,et al.  Self-calibration of tomographic weak lensing for the physics of baryons to constrain dark energy , 2007, 0709.4029.

[26]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.