Microsystem technologies for implantable applications

Microsystem technologies (MST) have become the basis of a large industry. The advantages of MST compared to other technologies provide opportunities for application in implantable biomedical devices. This paper presents a general and broad literature review of MST for implantable applications focused on the technical domain. A classification scheme is introduced to order the examples, basic technological building blocks relevant for implantable applications are described and finally a case study on the role of microsystems for one clinical condition is presented. We observe that the microfabricated parts span a wide range for implantable applications in various clinical areas. There are 94 active and 67 commercial 'end items' out of a total of 142. End item refers to the total concept, of which the microsystem may only be a part. From the 105 active end items 18 (13% of total number of end items) are classified as products. From these 18 products, there are only two for chronic use. The number of active end items in clinical, animal and proto phase for chronic use is 17, 13 and 20, respectively. The average year of first publication of chronic end items that are still in the animal or clinical phase is 1994 (n = 7) and 1993 (n = 11), respectively. The major technology–market combinations are sensors for cardiovascular, drug delivery for drug delivery and electrodes for neurology and ophthalmology. Together these form 51% of all end items. Pressure sensors form the majority of sensors and there is just one product (considered to be an implantable microsystem) in the neurological area. Micro-machined ceramic packages, glass sealed packages and polymer encapsulations are used. Glass to metal seals are used for feedthroughs. Interconnection techniques such as flip chip, wirebonding or conductive epoxy as used in the semiconductor packaging and assembly industry are also used for manufacturing of implantable devices. Coatings are polymers or metal. As an alternative to implantable primary batteries, rechargeable batteries were introduced or concepts in which energy is provided from the outside based on inductive coupling. Long-term developments aiming at autonomous power are, for example, based on electrostatic conversion of mechanical vibrations. Communication with the implantable device is usually done using an inductive link. A large range of materials commonly used in microfabrication are also used for implantable microsystems.

[1]  R I Kitney,et al.  Miniature ultrasonic probe construction for minimal access surgery. , 2004, Physics in medicine and biology.

[2]  R. van Est,et al.  Om het kleine te waarderen... Een schets van nanotechnologie: publiek debat, toepassingsgebieden en maatschappelijke aandachtspunten , 2004 .

[3]  W. Sansen,et al.  Programmable implantable device for investigating the adaptive response of skeletal muscle to chronic electrical stimulation , 2006, Medical and Biological Engineering and Computing.

[4]  M. Kirstein,et al.  Peak Endocardial Acceleration‐Based Clinical Testing of the “BEST” DDDR Pacemaker , 1998, Pacing and clinical electrophysiology : PACE.

[5]  C. Hierold,et al.  Implantable low power integrated pressure sensor system for minimal invasive telemetric patient monitoring , 1998, Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176.

[6]  Philip Adamson,et al.  Continuous ambulatory right heart pressure measurements with an implantable hemodynamic monitor: a multicenter, 12-month follow-up study of patients with chronic heart failure. , 2002, Journal of cardiac failure.

[7]  B. De Bruyne,et al.  Experimental Basis of Determining Maximum Coronary, Myocardial, and Collateral Blood Flow by Pressure Measurements for Assessing Functional Stenosis Severity Before and After Percutaneous Transluminal Coronary Angioplasty , 1993, Circulation.

[8]  A Wirtzfeld,et al.  Central Venous Oxygen Saturation for the Control of Automatic Rate‐Responsive Pacing * , 1982, Pacing and clinical electrophysiology : PACE.

[9]  T. Stieglitz,et al.  Flexible organic field effect transistors for biomedical microimplants using polyimide and parylene C as substrate and insulator layers , 2006 .

[10]  P. R. Troyk,et al.  Injectable microstimulator for functional electrical stimulation , 1991, Medical and Biological Engineering and Computing.

[11]  M. Madou Fundamentals of microfabrication , 1997 .

[12]  M. Esashi,et al.  Biomedical pressure sensor using buried piezoresistors , 1983 .

[13]  C. Couto,et al.  A noninvasive telemetric heart rate monitoring system based on phonocardiography , 1997, ISIE '97 Proceeding of the IEEE International Symposium on Industrial Electronics.

[14]  P. Hoff,et al.  RV Function in Stable and Unstable VT: Is There a Need for Hemodynamic Monitoring in Future Defibrillators? , 2001, Pacing and clinical electrophysiology : PACE.

[15]  Thomas Laube,et al.  A method and technical equipment for an acute human trial to evaluate retinal implant technology , 2005, Journal of neural engineering.

[16]  Thomas Stieglitz,et al.  Implantable flexible electrodes for functional electrical stimulation. , 2004, Medical device technology.

[17]  Richard A. Normann,et al.  A silicon based electrode array for intracortical stimulation: structural and electrical properties , 1989, Images of the Twenty-First Century. Proceedings of the Annual International Engineering in Medicine and Biology Society,.

[18]  M. Gad-el-Hak The MEMS Handbook , 2001 .

[19]  Kensall D. Wise,et al.  A Low-Capacitance Multielectrode Probe for Use in Extracellular Neurophysiology , 1975, IEEE Transactions on Biomedical Engineering.

[20]  P. Wouters,et al.  A composite membrane movement detector with dedicated interface electronics for animal activity tracking , 1993 .

[21]  Yiannos Manoli,et al.  Multisensor Catheter For Invasive Measuremt Of Blood Parameters , 1991, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society Volume 13: 1991.

[22]  Gerald E. Loeb,et al.  Clinical Applications of BIONTM Microstimulators , 2005 .

[23]  M Heinz,et al.  Central venous blood temperature for rate control of physiological pacemakers. , 1988, The Journal of cardiovascular surgery.

[24]  Paul Clewlow Tiny trials can give head start , 2005 .

[25]  K. Wise,et al.  A wireless microsensor for monitoring flow and pressure in a blood vessel utilizing a dual-inductor antenna stent and two pressure sensors , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[26]  André E. Aubert,et al.  In vivo comparison between two tip pressure transducer systems , 1995, International journal of clinical monitoring and computing.

[27]  Astrid Fahrleitner-Pammer,et al.  Correlation between serial measurements of N‐terminal pro brain natriuretic peptide and ambulatory cardiac filling pressures in outpatients with chronic heart failure , 2003, European journal of heart failure.

[28]  Wilfried Mokwa,et al.  MEMS technologies for epiretinal stimulation of the retina , 2004 .

[29]  H. Sachs,et al.  Retinal replacement—the development of microelectronic retinal prostheses—experience with subretinal implants and new aspects , 2004, Graefe's Archive for Clinical and Experimental Ophthalmology.

[30]  E. Siwapornsathain,et al.  A telemetry and sensor platform for ambulatory urodynamics , 2002, 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Proceedings (Cat. No.02EX578).

[31]  Yoichi Haga,et al.  Batch fabricated flat meandering shape memory alloy actuator for active catheter , 2001 .

[32]  Reinhold Orglmeister,et al.  A portable microsystem-based telemetric pressure and temperature measurement unit , 2000, IEEE Transactions on Biomedical Engineering.

[33]  K. Arabi,et al.  A monolithic miniaturized programmable implant for neuromuscular stimulation , 1995, Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society.

[34]  P. Chevalier,et al.  Clinical Experience with an Activity Sensing Pacemaker , 1986, Pacing and clinical electrophysiology : PACE.

[35]  Eberhart Zrenner,et al.  Studies on the feasibility of a subretinal visual prosthesis: data from Yucatan micropig and rabbit , 2001, Graefe's Archive for Clinical and Experimental Ophthalmology.

[36]  M. Addis,et al.  First experience in human beings with a permanently implantable intrasac pressure transducer for monitoring endovascular repair of abdominal aortic aneurysms. , 2004, Journal of vascular surgery.

[37]  P. Sarro,et al.  Fabrication of a CMOS compatible pressure sensor for harsh environments , 2004 .

[38]  Brindley Gs,et al.  The visual sensations produced by electrical stimulation of the medial occipital cortex. , 1968, The Journal of physiology.

[39]  John A. Carlisle,et al.  Low temperature growth of ultrananocrystalline diamond , 2004 .

[40]  Eduardo Fernandez,et al.  High-resolution spatio-temporal mapping of visual pathways using multi-electrode arrays , 2001, Vision Research.

[41]  Giulio Marotta,et al.  Contactless inductive-operation microcircuits for medical applications , 1988, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[42]  D Hickingbotham,et al.  Bipolar surface electrical stimulation of the vertebrate retina. , 1994, Archives of ophthalmology.

[43]  Thomas Stieglitz,et al.  18 polar Hybrid Cuff Electrodes for Stimulation of Peripheral Nerves , 2001 .

[44]  Michele Migliuolo,et al.  Mems Tactile Sensors for Surgical Instruments , 2003 .

[45]  G S Brindley,et al.  The visual sensations produced by electrical stimulation of the medial occipital cortex. , 1968, Journal of Physiology.

[46]  P. Morton,et al.  Progress in Biomedical Optics and Imaging , 2003 .

[47]  Thomas Stieglitz,et al.  Implantable microsystems for monitoring and neural rehabilitation, Part II. , 2001, Medical device technology.

[48]  G. Fedder,et al.  Endoscopic optical coherence tomography based on a microelectromechanical mirror. , 2001, Optics letters.

[49]  M. Addis,et al.  Abdominal aortic aneurysm sac shrinkage after endovascular aneurysm repair: correlation with chronic sac pressure measurement. , 2006, Journal of vascular surgery.

[50]  D. Howey,et al.  In vivo evaluation of an electroenzymatic glucose sensor implanted in subcutaneous tissue. , 1992, Biosensors & bioelectronics.

[51]  Jn Ross,et al.  Design and fabrication of a micromachined silicon accelerometer with thick-film printed PZT sensors , 2000 .

[52]  Robert Puers,et al.  A telemetry system for the detection of hip prosthesis loosening by vibration analysis , 2000 .

[53]  Diane E. Sutter,et al.  Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery , 2002, Nature Medicine.

[54]  A. van den Berg,et al.  Silicon micromachined hollow microneedles for transdermal liquid transfer , 2002, Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266).

[55]  Patrick D. Wolf,et al.  Two dimensional arrays for real time volumetric and intracardiac imaging with simultaneous electrocardiogram , 2000, 2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121).

[56]  Bedrich J. Hosticka,et al.  Single chip CMOS imagers and flexible microelectronic stimulators for a retina implant system , 2000 .

[57]  Hae-Won Kim,et al.  Hydroxyapatite-TiO2 Hybrid Coating on Ti Implants , 2006, Journal of Biomaterials Applications.

[58]  Wilfried Mokwa,et al.  Micro-transponder systems for medical applications , 2001, IEEE Trans. Instrum. Meas..

[59]  Kensall D. Wise,et al.  A flexible micromachined electrode array for a cochlear prosthesis , 1997, International Conference on Solid-State Sensors, Actuators and Microsystems.

[60]  Willy Sansen,et al.  An implantable pressure sensor for use in cardiology , 1990 .

[61]  D. Rushton,et al.  Sacral anterior root stimulators for bladder control in paraplegia , 1982, Paraplegia.

[62]  Patrick J. French,et al.  Multi-parameter sensor system with intravascular navigation for catheter/guide wire application , 2002 .

[63]  C. Coretsopoulos,et al.  Controller for a Continuous Near Infrared Glucose Sensor , 2005, 2005 Sensors for Industry Conference.

[64]  Wentai Liu,et al.  Retinal Prosthesis , 2018, Essentials in Ophthalmology.

[65]  Richard A. Normann,et al.  Micromachined, silicon based electrode arrays for electrical stimulation of or recording from cerebral cortex , 1991, [1991] Proceedings. IEEE Micro Electro Mechanical Systems.

[66]  J. Blankensteijn,et al.  Noninvasive Intrasac Pressure Measurement and the Influence of Type 2 and Type 3 Endoleaks in an Animal Model of Abdominal Aortic Aneurysm , 2004, Vascular.

[67]  Eduardo Fernández,et al.  Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve , 2004, IEEE Transactions on Biomedical Engineering.

[68]  Richard M. White,et al.  Micromachined silicon needle for ultrasonic surgery , 1995, 1995 IEEE Ultrasonics Symposium. Proceedings. An International Symposium.

[69]  Wilfried Nisch,et al.  Substrate-Integrated Microelectrodes with Improved Charge Transfer Capacity by 3-Dimensional Micro-Fabrication , 2003 .

[70]  G E Loeb,et al.  BION system for distributed neural prosthetic interfaces. , 2001, Medical engineering & physics.

[71]  C. Kufta,et al.  Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. , 1996, Brain : a journal of neurology.

[72]  Ming Lei,et al.  Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. , 2004, Advanced drug delivery reviews.

[73]  I. Ladabaum,et al.  Curved micromachined ultrasonic transducers , 2003, IEEE Symposium on Ultrasonics, 2003.

[74]  J. Rizzo,et al.  Multi-electrode stimulation and recording in the isolated retina , 2000, Journal of Neuroscience Methods.

[75]  Masayoshi Esashi,et al.  Catheter‐tip capacitive pressure sensor , 1990 .

[76]  Dorin Panescu,et al.  MEMS in medicine and biology. , 2006, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[77]  Regina Luttge,et al.  Silicon micromachined hollow microneedles for transdermal liquid transport , 2003 .

[78]  Fahrettin Levent Degertekin,et al.  Capacitive micromachined ultrasonic transducers for forward looking intravascular imaging arrays , 2002, 2002 IEEE Ultrasonics Symposium, 2002. Proceedings..

[79]  J. Mortimer,et al.  Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode , 1998, Brain Research.

[80]  Eli Peli,et al.  The Optical Functional Advantages of an Intraocular Low-Vision Telescope , 2002, Optometry and vision science : official publication of the American Academy of Optometry.

[81]  Yoon-Kyu Song,et al.  A microelectrode/microelectronic hybrid device for brain implantable neuroprosthesis applications , 2004, IEEE Transactions on Biomedical Engineering.

[82]  R.A. Normann,et al.  Microfabricated electrode arrays for restoring lost sensory and motor functions , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[83]  Wouter Olthuis,et al.  Exploitation of a pH-sensitive hydrogel disk for CO2 detection , 2004 .

[84]  M. Ferrarin,et al.  A pilot study of myoelectrically controlled FES of upper extremity , 2001, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[85]  Y. Sakai,et al.  Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications. , 2004, Biomaterials.

[86]  M. Mahadevappa,et al.  Chronic electrical stimulation of the canine retina , 2002, Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] [Engineering in Medicine and Biology.

[87]  Masayoshi Esashi,et al.  Ultra-miniature fiber-optic pressure sensor using white light interferometry , 2005 .

[88]  Robert Puers,et al.  Realization of a pressure telemetry capsule for cystometry , 1984 .

[89]  N. Cohen,et al.  Cochlear Implants , 2000 .

[90]  Jiping He,et al.  Polyimide based neural implants with stiffness improvement , 2004 .

[91]  A. Y. Chow,et al.  Subretinal electrical stimulation of the rabbit retina , 1997, Neuroscience Letters.

[92]  Martin Stelzle,et al.  Biostability of micro-photodiode arrays for subretinal implantation. , 2002, Biomaterials.

[93]  Kensall D. Wise,et al.  An IC piezoresistive pressure sensor for biomedical instrumentation , 1971 .

[94]  Gerhard J. Mueller,et al.  Confocal microscanner technique for endoscopic vision , 1997, European Conference on Biomedical Optics.

[95]  Amit Lal,et al.  Integrated pressure and flow sensor in silicon-based ultrasonic surgical actuator , 2001, 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.01CH37263).

[96]  P Bergveld,et al.  Study of chemically induced pressure generation of hydrogels under isochoric conditions using a microfabricated device. , 2004, The Journal of chemical physics.

[97]  Richard A. Normann,et al.  Noble metal penetrating cortical stimulating electrode array: preliminary results , 1988, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[98]  A. Rickards,et al.  Relation between QT interval and heart rate. New design of physiologically adaptive cardiac pacemaker. , 1981, British heart journal.

[99]  Khalil Najafi,et al.  An ultraminiature CMOS pressure sensor for a multiplexed cardiovascular catheter , 1992 .

[100]  L.L. Baker,et al.  Clinical applications of BION/sup TM/ microstimulators , 2005, Proceedings. 2005 First International Conference on Neural Interface and Control, 2005..

[101]  Masayoshi Esashi,et al.  Biomedical microsystems for minimally invasive diagnosis and treatment , 2004, Proceedings of the IEEE.

[102]  E N Sobol,et al.  Biocompatibility of Laser-deposited Hydroxyapatite Coatings on Titanium and Polymer Implant Materials. , 1998, Journal of biomedical optics.

[103]  D.N. Stephens,et al.  Miniaturized circular array [for intravascular ultrasound] , 2000, 2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121).

[104]  W. Sansen,et al.  A two-wire, digital output multichannel microprobe for recording single-unit neural activity , 1991 .

[105]  K. Najafi,et al.  Long-term testing of hermetic anodically bonded glass-silicon packages , 2002, Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266).

[106]  K Arabi,et al.  Electronic design of a multichannel programmable implant for neuromuscular electrical stimulation. , 1999, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[107]  H B Boom,et al.  Endoneural selective stimulating using wire-microelectrode arrays. , 1999, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[108]  T. Webster,et al.  Mimicking the nanofeatures of bone increases bone-forming cell adhesion and proliferation , 2005 .

[109]  Göran Stemme,et al.  Side-opened out-of-plane microneedles for microfluidic transdermal liquid transfer , 2003 .

[110]  Thomas J. Webster,et al.  Nano-biotechnology: carbon nanofibres as improved neural and orthopaedic implants , 2004, Nanotechnology.

[111]  F. L. Degertekin,et al.  Fabrication and characterization of cMUTs for forward looking intravascular ultrasound imaging , 2003, IEEE Symposium on Ultrasonics, 2003.

[112]  E. Zrenner,et al.  Can subretinal microphotodiodes successfully replace degenerated photoreceptors? , 1999, Vision Research.

[113]  Mohamad Sawan,et al.  Low-power implantable microsystem intended to multichannel cortical recording , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[114]  E. Cosman,et al.  A telemetric pressure sensor for ventricular shunt systems. , 1979, Surgical neurology.

[115]  G. Kovacs Micromachined Transducers Sourcebook , 1998 .

[116]  C. Collins,et al.  Miniature passive pressure transensor for implanting in the eye. , 1967, IEEE transactions on bio-medical engineering.

[117]  Pasqualina M. Sarro,et al.  Pressure, flow and oxygen saturation sensors on one chip for use in catheters , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[118]  P. Donaldson,et al.  Twenty years of neurological prosthesis-making. , 1987, Journal of biomedical engineering.

[119]  Neal S Peachey,et al.  Subretinal implantation of semiconductor-based photodiodes: durability of novel implant designs. , 2002, Journal of rehabilitation research and development.

[120]  J. Lekkala,et al.  Characteristic properties of implantable Ag/AgCl- and Pt-electrodes , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[121]  M. Leon,et al.  Can coronary flow parameters after stent placement predict restenosis? , 1995, Catheterization and cardiovascular diagnosis.

[122]  Andrea Reinhardt,et al.  3D-CSP: an innovative packaging method based on RMPD , 2001, Microelectronic and MEMS Technologies.

[123]  John J. Mastrototaro,et al.  Early clinical experience with an integrated continuous glucose sensor/insulin pump platform , 2006 .

[124]  R. Orglmeister,et al.  Study and development of a portable telemetric intracranial pressure measurement unit , 1997, Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering' (Cat. No.97CH36136).

[125]  M. Sawan,et al.  A multiple operation mode CMOS digital pixel sensor dedicated to a visual cortical implant , 2004, The 2004 47th Midwest Symposium on Circuits and Systems, 2004. MWSCAS '04..

[126]  F. Levent Degertekin,et al.  Micromachined capacitive transducer arrays for intravascular ultrasound imaging , 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005..

[127]  K. Najafi,et al.  Mechanical characterization and design of flexible silicon microstructures , 2004, Journal of Microelectromechanical Systems.

[128]  Lars Rosengren,et al.  Passive silicon transensor intended for biomedical, remote pressure monitoring , 1990 .

[129]  Saibal Kar,et al.  Images in cardiovascular medicine. Dynamic myocardial ischemia caused by circumflex artery stenosis detected by a new implantable left atrial pressure monitoring device. , 2006, Circulation.

[130]  D. Rushton,et al.  Electrical splinting of the knee in paraplegia , 1979, Paraplegia.

[131]  Wilhelm Stork,et al.  Implantable osmotic-pressure-based glucose sensor with noninvasive optical readout , 2004, SPIE Micro + Nano Materials, Devices, and Applications.

[132]  D D Koch,et al.  A prospective multicenter clinical trial to evaluate the safety and effectiveness of the implantable miniature telescope. , 2004, American journal of ophthalmology.

[133]  F. Yao,et al.  In vivo gene transfer to skin and wound by microseeding. , 1998, The Journal of surgical research.

[134]  M. Allen,et al.  Electroplated metal microstructures embedded in fusion-bonded silicon: conductors and magnetic materials , 2004, Journal of Microelectromechanical Systems.

[135]  John S. Pollack,et al.  Subretinal Artificial Silicon Retina Microchip for the Treatment of Retinitis Pigmentosa: 3 1/2 Year Update , 2004 .

[136]  Patrick J. French,et al.  3D position and orientation measurements with a magnetic sensor for use in vascular interventions , 2003, IEEE EMBS Asian-Pacific Conference on Biomedical Engineering, 2003..

[137]  W. H. Dobelle Artificial vision for the blind by connecting a television camera to the visual cortex. , 2000, ASAIO journal.

[138]  D. Crapper,et al.  RETINAL EXCITATION AND INHIBITION FROM DIRECT ELECTRICAL STIMULATION. , 1963, Journal of neurophysiology.

[139]  Robert Puers,et al.  Electrodeposited copper inductors for intraocular pressure telemetry , 2000 .

[140]  R. Normann,et al.  Chronic recordings of visually evoked responses using the utah intracortical electrode array , 1993, Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Societ.

[141]  Thomas J Webster,et al.  Polymers with nano-dimensional surface features enhance bladder smooth muscle cell adhesion. , 2003, Journal of biomedical materials research. Part A.

[142]  Peter Enoksson,et al.  Micromachined electrodes for biopotential measurements , 2001 .

[143]  L Stangeland,et al.  Long‐Term Clinical Performance of a Central Venous Oxygen Saturation Sensor for Rate Adaptive Cardiac Pacing , 1994, Pacing and clinical electrophysiology : PACE.

[144]  K C Madhusudhana,et al.  A prospective multicenter clinical trial to evaluate the safety and effectiveness of the implantable miniature telescope. , 2005, American journal of ophthalmology.

[145]  K. Wise,et al.  A high-yield IC-compatible multichannel recording array , 1985, IEEE Transactions on Electron Devices.

[146]  G. Stemme,et al.  Generic leak-free drug storage and delivery for microneedle-based systems , 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005..

[147]  Joseph P. Vacanti,et al.  Biodegradable Polymer Microfluidics for Tissue Engineering Microvasculature , 2002 .

[148]  Sylvia Daunert,et al.  Responsive drug delivery systems. , 2003, Analytical chemistry.

[149]  Zayd C. Leseman,et al.  A Novel Glucose Sensor Based on Deflection of a Thin Membrane , 2005 .

[150]  A. Y. Chow,et al.  The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. , 2004, Archives of ophthalmology.

[151]  D. Liepmann,et al.  In-device enzyme immobilization: wafer-level fabrication of an integrated glucose sensor , 2004 .

[152]  T Stieglitz,et al.  Implantable microsystems for monitoring and neural rehabilitation, part I. , 2001, Medical device technology.

[153]  E. Cosman,et al.  The relationship between ventricular fluid pressure and body position in normal subjects and subjects with shunts: a telemetric study. , 1990, Neurosurgery.

[154]  M Ferrari,et al.  Nanoporous anti-fouling silicon membranes for biosensor applications. , 2000, Biosensors & bioelectronics.

[155]  Thomas Schmitz-Rode,et al.  Intravascular pressure monitoring system , 2004 .

[156]  Nadim Maluf,et al.  An Introduction to Microelectromechanical Systems Engineering , 2000 .

[157]  I. Piper,et al.  A clinical evaluation of the Codman MicroSensor for intracranial pressure monitoring. , 1998, British journal of neurosurgery.

[158]  P Rossi,et al.  Respiratory Rate as a Determinant of Optimal Pacing Rate , 1983, Pacing and clinical electrophysiology : PACE.

[159]  Henry Krum,et al.  The Heartpod implantable heart failure therapy system. , 2005, Heart, lung & circulation.

[160]  W. Dobelle,et al.  Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind , 1974, The Journal of physiology.

[161]  Etienne Burdet,et al.  Microrobotics and MEMS-based fabrication techniques for scaffold-based tissue engineering. , 2005, Macromolecular bioscience.

[162]  Werner Karl Schomburg,et al.  Polymer micro piezo valve with a small dead volume , 2004 .

[163]  Patrick J. French,et al.  Silicon sensors for use in catheters , 2000, 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Proceedings (Cat. No.00EX451).

[164]  Mohamad Sawan,et al.  Image acquisition and reduction dedicated to a visual implant , 1996, Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[165]  S. Kelly,et al.  Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. , 2003, Investigative ophthalmology & visual science.

[166]  Juan G. Santiago,et al.  A review of micropumps , 2004 .

[167]  Satu Arra Acoustic power transmission into an implantable device , 2006 .

[168]  K. Najafi,et al.  A hermetic glass-silicon micropackage with high-density on-chip feedthroughs for sensors and actuators , 1996 .

[169]  S Sauermann,et al.  Basic design and construction of the Vienna FES implants: existing solutions and prospects for new generations of implants. , 2001, Medical engineering & physics.

[170]  Thomas Schanze,et al.  Transscleral implantation and neurophysiological testing of subretinal polyimide film electrodes in the domestic pig in visual prosthesis development , 2005, Journal of neural engineering.

[171]  D. Rushton,et al.  Sacral anterior root stimulators for bladder control in paraplegia: the first 50 cases. , 1986, Journal of neurology, neurosurgery, and psychiatry.

[172]  Jan Peirs,et al.  A micro optical force sensor for force feedback during minimally invasive robotic surgery , 2003 .

[173]  D. Bresnahan,et al.  Initial experience with an implantable hemodynamic monitor. , 1996, Circulation.

[174]  W.L.C. Rutten,et al.  Sensitivity and selectivity of intraneural stimulation using a silicon electrode array , 1991, IEEE Transactions on Biomedical Engineering.

[175]  D.C. Miller,et al.  Mechanisms controlling increased vascular cell adhesion to nano-structured polymer films , 2004, IEEE 30th Annual Northeast Bioengineering Conference, 2004. Proceedings of the.

[176]  E. Valderrama,et al.  Polyimide cuff electrodes for peripheral nerve stimulation , 2000, Journal of Neuroscience Methods.

[177]  Harold Van Winkle Improving the Image , 1968 .

[178]  M. Dokmeci,et al.  Accelerated testing of anodically bonded glass-silicon packages in salt water , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[179]  T. A. Frieswijk,et al.  3D neuro-electronic interface devices for neuromuscular control: design studies and realisation steps. , 1995, Biosensors & bioelectronics.

[180]  J. McLean,et al.  Low temperature fabrication of immersion capacitive micromachined ultrasonic transducers on silicon and dielectric substrates , 2004, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[181]  J. D. Cooper,et al.  Technique for very long-term monitoring of intracranial pressure , 2006, Medical and Biological Engineering and Computing.

[182]  Matthijs Langelaar,et al.  Design optimization of shape memory alloy structures , 2004 .

[183]  M.S. Humayun,et al.  Electrical stimulation of retina in blind humans , 2003, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439).

[184]  O. Prohaska,et al.  Thin-Film Multiple Electrode Probes: Possibilities and Limitations , 1986, IEEE Transactions on Biomedical Engineering.

[185]  Arjun D. Sharma,et al.  Development of a Rate Adaptive Pacemaker Based on the Maximum Rate‐of‐Rise of Right Ventricular Pressure (RV dP/dtmax) , 1992, Pacing and clinical electrophysiology : PACE.

[186]  L Padeletti,et al.  [Clinical and biological aspects in patient with pH-triggered implanted pacemaker (author's transl)]. , 1978, Giornale italiano di cardiologia.

[187]  S. Gamper,et al.  A high-performance silicon micropump for disposable drug delivery systems , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[188]  K. E. Jones,et al.  A glass/silicon composite intracortical electrode array , 2006, Annals of Biomedical Engineering.

[189]  Michael L. Reed,et al.  Microsystems for drug and gene delivery , 2004, Proceedings of the IEEE.

[190]  J Holsheimer,et al.  Application of a dual channel peroneal nerve stimulator in a patient with a "central" drop foot. , 2002, Acta neurochirurgica. Supplement.

[191]  Kenzi Murakami A miniature confocal optical scanning microscope for endoscopes , 2005, SPIE MOEMS-MEMS.

[192]  R. Cobbold,et al.  An implantable pacemaker for the reduction of heart rate , 1965, Medical electronics and biological engineering.

[193]  Christine Harendt,et al.  Novel Device Concept for Voltage-Bias Controlled Color Detection in Amorphous Silicon Sensitized Cmos Cameras , 1999 .

[194]  Robert Puers,et al.  Implantable sensor systems , 2005 .

[195]  Amit Lal,et al.  A multifunctional silicon-based microscale surgical system , 2001 .

[196]  M. Dokmeci,et al.  Improving corrosion-resistance of silicon-glass micropackages using boron doping and/or self-induced galvanic bias , 2001, 2001 IEEE International Reliability Physics Symposium Proceedings. 39th Annual (Cat. No.00CH37167).

[197]  E.H.J. Weil,et al.  Clinical and experimental aspects of sacral nerve neuromodulation in lower urinary tract dysfunction , 2000 .

[198]  Rainer Laur,et al.  Advanced hybrid integrated low-power telemetric pressure monitoring system for biomedical applications , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[199]  James M. Bower,et al.  Plasma-etched neural probes , 1996 .

[200]  M. Esashi,et al.  Fabrication of catheter-tip and sidewall miniature pressure sensors , 1982, IEEE Transactions on Electron Devices.

[201]  P. Wolf,et al.  A miniaturized catheter 2-D array for real-time, 3-D intracardiac echocardiography , 2004, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[202]  R. Puers,et al.  Self Tuning Inductive Powering For Implantable Telemetric Monitoring Systems , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[203]  G. Brindley,et al.  The site of electrical excitation of the human eye , 1955, The Journal of physiology.

[204]  Utkan Demirci,et al.  Medical imaging using capacitive micromachined ultrasonic transducer arrays. , 2002, Ultrasonics.

[205]  M M Elhilali,et al.  A new bladder stimulator--hand-held controller and miniaturized implant: preliminary results in dogs. , 1993, Biomedical instrumentation & technology.

[206]  L Rydén,et al.  Monitoring of mixed venous oxygen saturation and pressure from biosensors in the right ventricle. A 24 hour study in patients with heart failure. , 1995, European heart journal.

[207]  H A Ball,et al.  Validation of a telemetry system for measurement of blood pressure, electrocardiogram and locomotor activity in beagle dogs. , 1997, Clinical and experimental hypertension.

[208]  Paul Clewlow Drugs in transit , 2004 .

[209]  Jiping He,et al.  Polyimide-based intracortical neural implant with improved structural stiffness , 2004 .

[210]  B. Hoefflinger,et al.  The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. , 1997, Ophthalmic research.

[211]  Rolf Eckmiller Towards Retina Implants for Improvement of Vision in Humans with Retinitis Pigmentosa - Challenges and First Results 1 , 1995 .

[212]  P. Dario,et al.  Micro-systems in biomedical applications , 2000 .

[213]  Wouter Olthuis,et al.  A swelling hydrogel-based PCO2 sensor , 2003 .

[214]  G. Stemme,et al.  Reliable in-vivo penetration and transdermal injection using ultra-sharp hollow microneedles , 2005, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05..

[215]  D. Panescu An imaging pill for gastrointestinal endoscopy , 2005, IEEE Engineering in Medicine and Biology Magazine.

[216]  Enrico Marani,et al.  Functional electric stimulation for sensory and motor functions: progress and problems , 2003 .

[217]  Chi-Hoon Jun,et al.  Needle-shaped glucose sensor with multicell electrode fabricated by surface micromachining , 1999, Design, Test, Integration, and Packaging of MEMS/MOEMS.

[218]  Robert Langer,et al.  Three‐Dimensional Microfluidic Tissue‐Engineering Scaffolds Using a Flexible Biodegradable Polymer , 2006, Advanced materials.

[219]  John T Santini,et al.  Chronic, programmed polypeptide delivery from an implanted, multireservoir microchip device , 2006, Nature Biotechnology.

[220]  Robert Puers,et al.  A low power miniaturized autonomous data logger for dental implants , 2002 .

[221]  R. Normann,et al.  Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex , 1998, Journal of Neuroscience Methods.

[222]  L. Tenerz,et al.  The first surface micromachined pressure sensor for cardiovascular pressure measurements , 1998, Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176.