We study the dynamics of nonlocally coupled phase oscillators in a modular network. The interactions include a phase lag, α. Depending on the various parameters the system exhibits a number of different dynamical states. In addition to global synchrony there can also be modular synchrony when each module can synchronize separately to a different frequency. There can also be multicluster frequency chimeras, namely coherent domains consisting of modules that are separately synchronized to different frequencies, coexisting with modules within which the dynamics is desynchronized. We apply the Ott-Antonsen ansatz in order to reduce the effective dimensionality and thereby carry out a detailed analysis of the different dynamical states.