Synchronization of complex networks through local adaptive coupling.

Two local adaptive strategies for the synchronization of complex networks are discussed in this paper. One, termed as vertex-based, uses local adaptive coupling gains at each node in the network. The other, named edge-based, associates to each edge in the network an adaptive coupling gain, determined solely on the basis of local information. The global asymptotic stability of the synchronous evolution is proven for both strategies using appropriate Lyapunov-based techniques. The effectiveness of the adaptive methodologies presented in the paper is shown via two representative examples: adaptive consensus and the adaptive synchronization of a network on N coupled Chua's circuits.

[1]  Takashi Matsumoto,et al.  A chaotic attractor from Chua's circuit , 1984 .

[2]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[3]  L. Chua,et al.  The double hook (nonlinear chaotic circuits) , 1988 .

[4]  L.O. Chua,et al.  Cellular neural networks , 1993, 1988., IEEE International Symposium on Circuits and Systems.

[5]  Physical Review Letters 63 , 1989 .

[6]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[7]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[8]  Leon O. Chua,et al.  EXPERIMENTAL CHAOS SYNCHRONIZATION IN CHUA'S CIRCUIT , 1992 .

[9]  Leon O. Chua,et al.  On Chaotic Synchronization in a Linear Array of Chua's Circuits , 1993, J. Circuits Syst. Comput..

[10]  L. Chua,et al.  Synchronization in an array of linearly coupled dynamical systems , 1995 .

[11]  W. Gropp,et al.  Accepted for publication , 2001 .

[12]  Dr. Gabriele Manganaro,et al.  Cellular Neural Networks , 1999, Springer Series in Advanced Microelectronics.

[13]  Ieee Circuits,et al.  IEEE Circuits and Systems Magazine , 2001 .

[14]  Chin-Hsing Chen,et al.  (IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II: EXPRESS BRIEFS, 48(1):120-122)Numerical Inversion of Laplace Transfrom Using Haar Wavelet Operational Matrices , 2001 .

[15]  Ian F. Akyildiz,et al.  Wireless sensor networks: a survey , 2002, Comput. Networks.

[16]  Tamás Roska,et al.  International Journal of Circuit Theory and Applications: Introduction , 2002 .

[17]  Guanrong Chen,et al.  Complex networks: small-world, scale-free and beyond , 2003 .

[18]  J. Fewell Social Insect Networks , 2003, Science.

[19]  Vikram Krishnamurthy,et al.  IEEE Transactions on Circuits and Systems II: Express Briefs , 2004 .

[20]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[21]  M. Elowitz,et al.  Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Ioannis G. Kevrekidis,et al.  International Journal of Bifurcation and Chaos in Applied Sciences and Engineering: Editorial , 2005 .

[23]  Johan A. K. Suykens,et al.  Cellular Neural Networks, Multi-Scroll Chaos and Synchronization , 2005 .

[24]  Yi Zhao,et al.  Some new algebraic criteria for chaos synchronization of Chua's circuits by linear state error feedback control , 2006, Int. J. Circuit Theory Appl..

[25]  Changsong Zhou,et al.  Dynamical weights and enhanced synchronization in adaptive complex networks. , 2006, Physical review letters.

[26]  V. Latora,et al.  The Structure and Dynamics of Complex Networks , 2006 .

[27]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[28]  Fernando Paganini,et al.  IEEE Transactions on Automatic Control , 2006 .

[29]  K. Aihara,et al.  Synchronization of coupled nonidentical genetic oscillators , 2006, Physical biology.

[30]  Tianping Chen,et al.  Pinning Complex Networks by a Single Controller , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[31]  Licheng Jiao,et al.  Robust adaptive global synchronization of complex dynamical networks by adjusting time-varying coupling strength , 2008 .

[32]  Mario di Bernardo,et al.  Adaptive synchronization of complex networks , 2008, Int. J. Comput. Math..

[33]  J. Kurths,et al.  Synchronization in the Kuramoto model: a dynamical gradient network approach. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  E. Ott,et al.  Adaptive synchronization of dynamics on evolving complex networks. , 2008, Physical review letters.

[35]  Guanrong Chen,et al.  IEEE Circuits and Systems Magazine: From the Editor , 2010 .

[36]  Physics Reports , 2022 .

[37]  B. Reviews,et al.  IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 9, SEPTEMBER 2000 Book Reviews__________________________________________________________________________ , 2022 .

[38]  October I Physical Review Letters , 2022 .