From High-Level Model to Branch-and-Price Solution in G12

The G12 project is developing a software environment for stating and solving combinatorial problems by mapping a high-level model of the problem to an efficient combination of solving methods. Model annotations are used to control this process. In this paper we explain the mapping to branch-and-price solving. G12 supports the selection of specialised sub-problem solvers, the aggregation of identical subproblems, automatic disaggregation when required by search, and the use of specialised branching rules. We demonstrate the benefits of the G12 framework on three examples: a trucking problem, cutting stock, and two-dimensional bin packing.

[1]  Anthony Wren,et al.  Computer Scheduling of Public Transportation: Urban Passenger Vehicle and Crew Scheduling , 1981 .

[2]  Joxan Jaffar,et al.  Principles and Practice of Constraint Programming – CP’99 , 1999, Lecture Notes in Computer Science.

[3]  Michael J. Maher,et al.  The G12 Project: Mapping Solver Independent Models to Efficient Solutions , 2005, CP.

[4]  George B. Dantzig,et al.  Decomposition Principle for Linear Programs , 1960 .

[5]  Cid C. de Souza,et al.  A Hybrid Approach for Solving Large Scale Crew Scheduling Problems , 2000, PADL.

[6]  Stefan E. Karisch,et al.  A Framework for Constraint Programming Based Column Generation , 1999, CP.

[7]  Peter J. Stuckey,et al.  ACD Term Rewriting , 2006, ICLP.

[8]  John J. H. Forrest,et al.  Column generation and the airline crew pairing problem. , 1998 .

[9]  Daniele Vigo,et al.  Models and Bounds for Two-Dimensional Level Packing Problems , 2004, J. Comb. Optim..

[10]  G. Nemhauser,et al.  Integer Programming , 2020 .

[11]  R. Gomory,et al.  A Linear Programming Approach to the Cutting-Stock Problem , 1961 .

[12]  Michael Jünger,et al.  The ABACUS system for branch‐and‐cut‐and‐price algorithms in integer programming and combinatorial optimization , 2000, Softw. Pract. Exp..

[13]  Peter van Beek,et al.  Principles and Practice of Constraint Programming - CP 2005, 11th International Conference, CP 2005, Sitges, Spain, October 1-5, 2005, Proceedings , 2005, CP.

[14]  Michael J. Maher,et al.  The G12 Project: Mapping Solver Independent Models to Efficient Solutions , 2005, ICLP.

[15]  Michel Gendreau,et al.  Solving VRPTWs with Constraint Programming Based Column Generation , 2004, Ann. Oper. Res..

[16]  Alain Chabrier Génération de colonnes et de coupes utilisant des sous-problèmes de plus court chemin , 2003 .

[17]  Frédéric Benhamou Principles and Practice of Constraint Programming - CP 2006, 12th International Conference, CP 2006, Nantes, France, September 25-29, 2006, Proceedings , 2006, CP.

[18]  Peter J. Stuckey,et al.  Flexible, Rule-Based Constraint Model Linearisation , 2008, PADL.

[19]  L. V. Kantorovich,et al.  Mathematical Methods of Organizing and Planning Production , 1960 .

[20]  Martin W. P. Savelsbergh,et al.  MINTO, a mixed INTeger optimizer , 1994, Oper. Res. Lett..

[21]  Zoltan Somogyi,et al.  The Execution Algorithm of Mercury, an Efficient Purely Declarative Logic Programming Language , 1996, J. Log. Program..

[22]  Krzysztof R. Apt,et al.  Logic Programming , 1990, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[23]  Pascal Van Hentenryck,et al.  OPL Script: Composing and Controlling Models , 1999, New Trends in Constraints.

[24]  Andrew Eremin Using dual values to integrate row and column generation into constant logic , 2004 .

[25]  Günther R. Raidl,et al.  Models and algorithms for three-stage two-dimensional bin packing , 2007, Eur. J. Oper. Res..

[26]  Kim Marriott,et al.  The Modelling Language Zinc , 2006, CP.

[27]  Francisco Barahona,et al.  The volume algorithm: producing primal solutions with a subgradient method , 2000, Math. Program..

[28]  Martin W. P. Savelsbergh,et al.  Branch-and-Price: Column Generation for Solving Huge Integer Programs , 1998, Oper. Res..

[29]  Francesca Rossi,et al.  New Trends in Constraints , 2001, Lecture Notes in Computer Science.

[30]  Nikolaos Papadakos,et al.  Integrated airline scheduling , 2009, Comput. Oper. Res..

[31]  Sven de Vries,et al.  A Branch-and-Price Algorithm and New Test Problems for Spectrum Auctions , 2005, Manag. Sci..

[32]  Gerhard Wäscher,et al.  CUTGEN1: A problem generator for the standard one-dimensional cutting stock problem , 1995 .

[33]  Natashia Boland,et al.  A Column Generation Approach to Delivery Planning over Time with Inhomogeneous Service Providers and Service Interval Constraints , 2001, Ann. Oper. Res..

[34]  T. Ralphs,et al.  COIN/BCP User’s Manual , 2001 .

[35]  Tobias Achterberg,et al.  SCIP - a framework to integrate Constraint and Mixed Integer Programming , 2004 .

[36]  Jacques Desrosiers,et al.  On Compact Formulations for Integer Programs Solved by Column Generation , 2005, Ann. Oper. Res..