On the Influence of the Orthogonalization Scheme on the Parallel Performance of GMRES
暂无分享,去创建一个
[1] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[2] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[3] Å. Björck. Numerics of Gram-Schmidt orthogonalization , 1994 .
[4] John N. Shadid,et al. A Comparison of Preconditioned Nonsymmetric Krylov Methods on a Large-Scale MIMD Machine , 1994, SIAM J. Sci. Comput..
[5] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[6] Françoise Chaitin-Chatelin,et al. Lectures on finite precision computations , 1996, Software, environments, tools.
[7] Luc Giraud,et al. A Set of GMRES Routines for Real and Complex Arithmetics , 1997 .
[8] M. Rozložník,et al. Numerical stability of GMRES , 1995 .
[9] Megan Sorenson,et al. Library , 1958 .
[10] Lorenzo Valdettaro,et al. Inertial waves in a rotating spherical shell , 1997, Journal of Fluid Mechanics.
[11] M. Rieutord,et al. Inertial modes in the liquid core of the Earth , 1995 .
[12] Barry F. Smith,et al. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .
[13] M. Rozložník,et al. Numerical behaviour of the modified gram-schmidt GMRES implementation , 1997 .