Integrative Data Analysis to Improve Protein Identification in Shotgun Proteomics Experiments Supplementary Notes

1 Department of Computer Sciences, 1 University Station C0500, The University of Texas at Austin, Austin, TX 78712 2 Center for Systems and Synthetic Biology, Department of Chemistry and Biochemistry & Institute for Cellular and Molecular Biology, 2500 Speedway, The University of Texas at Austin, Austin, TX 78712 3 Children’s Cancer Research Institute; The University of Texas Health Science Center at San Antonio; San Antonio, TX 78229

[1]  Lewis Y. Geer,et al.  Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry , 2007, Proceedings of the National Academy of Sciences.

[2]  M. Mann,et al.  Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system , 2006, Genome Biology.

[3]  J. Derisi,et al.  Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise , 2006, Nature.

[4]  Fatima Sanchez-Cabo,et al.  Global Gene Expression Profiling Reveals Widespread yet Distinctive Translational Responses to Different Eukaryotic Translation Initiation Factor 2B-Targeting Stress Pathways , 2005, Molecular and Cellular Biology.

[5]  Michael K. Coleman,et al.  Correlation of relative abundance ratios derived from peptide ion chromatograms and spectrum counting for quantitative proteomic analysis using stable isotope labeling. , 2005, Analytical chemistry.

[6]  Gordon Broderick,et al.  Localization, Annotation, and Comparison of the Escherichia coli K-12 Proteome under Two States of Growth*S , 2005, Molecular & Cellular Proteomics.

[7]  Markus J. Herrgård,et al.  Integrating high-throughput and computational data elucidates bacterial networks , 2004, Nature.

[8]  Rong Wang,et al.  The need for a public proteomics repository , 2004, Nature Biotechnology.

[9]  Jeremy D. Glasner,et al.  Genome-Scale Analysis of the Uses of the Escherichia coli Genome: Model-Driven Analysis of Heterogeneous Data Sets , 2003, Journal of bacteriology.

[10]  E. O’Shea,et al.  Global analysis of protein expression in yeast , 2003, Nature.

[11]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Michael I. Jordan,et al.  Toward a protein profile of Escherichia coli: Comparison to its transcription profile , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  R. Aebersold,et al.  A statistical model for identifying proteins by tandem mass spectrometry. , 2003, Analytical chemistry.

[14]  Alexey I Nesvizhskii,et al.  Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. , 2002, Analytical chemistry.

[15]  John D. Storey,et al.  Precision and functional specificity in mRNA decay , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Ji Huang,et al.  [Serial analysis of gene expression]. , 2002, Yi chuan = Hereditas.

[17]  J. Yates,et al.  Large-scale analysis of the yeast proteome by multidimensional protein identification technology , 2001, Nature Biotechnology.

[18]  B. Futcher,et al.  A Sampling of the Yeast Proteome , 1999, Molecular and Cellular Biology.

[19]  Michael R. Green,et al.  Dissecting the Regulatory Circuitry of a Eukaryotic Genome , 1998, Cell.

[20]  D. Ghosh,et al.  Statistical validation of peptide identifications in large-scale proteomics using the target-decoy database search strategy and flexible mixture modeling. , 2008, Journal of proteome research.

[21]  Hyungwon Choi,et al.  False discovery rates and related statistical concepts in mass spectrometry-based proteomics. , 2008, Journal of proteome research.

[22]  William Stafford Noble,et al.  Assigning significance to peptides identified by tandem mass spectrometry using decoy databases. , 2008, Journal of proteome research.

[23]  E. Marcotte,et al.  Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation , 2007, Nature Biotechnology.

[24]  Joshua E. Elias,et al.  Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. , 2003, Journal of proteome research.

[25]  A. Nesvizhskii,et al.  Experimental protein mixture for validating tandem mass spectral analysis. , 2002, Omics : a journal of integrative biology.

[26]  George M. Church,et al.  Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K‐12 , 1997, Electrophoresis.

[27]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .