Simulating Population Protocols in Sub-Constant Time per Interaction

We consider the problem of efficiently simulating population protocols. In the population model, we are given a distributed system of $n$ agents modeled as identical finite-state machines. In each time step, a pair of agents is selected uniformly at random to interact. In an interaction, agents update their states according to a common transition function. We empirically and analytically analyze two classes of simulators for this model. First, we consider sequential simulators executing one interaction after the other. Key to the performance of these simulators is the data structure storing the agents' states. For our analysis, we consider plain arrays, binary search trees, and a novel Dynamic Alias Table data structure. Secondly, we consider batch processing to efficiently update the states of multiple independent agents in one step. For many protocols considered in literature, our simulator requires amortized sub-constant time per interaction and is fast in practice: given a fixed time budget, the implementation of our batched simulator is able to simulate population protocols several orders of magnitude larger compared to the sequential competitors, and can carry out $2^{50}$ interactions among the same number of agents in less than 400s.

[1]  David Eisenstat,et al.  Stably computable predicates are semilinear , 2006, PODC '06.

[2]  Yves Mocquard,et al.  Counting with Population Protocols , 2015, 2015 IEEE 14th International Symposium on Network Computing and Applications.

[3]  Alastair J. Walker,et al.  An Efficient Method for Generating Discrete Random Variables with General Distributions , 1977, TOMS.

[4]  David Eisenstat,et al.  A simple population protocol for fast robust approximate majority , 2007, Distributed Computing.

[5]  Leszek Gasieniec,et al.  Almost Logarithmic-Time Space Optimal Leader Election in Population Protocols , 2018, SPAA.

[6]  David Eisenstat,et al.  The computational power of population protocols , 2006, Distributed Computing.

[7]  G. Pólya,et al.  Sur quelques points de la théorie des probabilités , 1930 .

[8]  Peter Sanders,et al.  Parallel Weighted Random Sampling , 2019, ESA.

[9]  Bennett L. Fox,et al.  Generating Markov-Chain Transitions Quickly: I , 1990, INFORMS J. Comput..

[10]  Robert Elsässer,et al.  Recent Results in Population Protocols for Exact Majority and Leader Election , 2018, Bull. EATCS.

[11]  Petra Berenbrink,et al.  Simple and Efficient Leader Election , 2018, SOSA.

[12]  Paul G. Spirakis,et al.  Determining majority in networks with local interactions and very small local memory , 2014, Distributed Computing.

[13]  Michael J. Fischer,et al.  Computation in networks of passively mobile finite-state sensors , 2004, PODC '04.

[14]  J. Weeks An introduction to population , 2012 .

[15]  Jeffrey Scott Vitter,et al.  Dynamic Generation of Discrete Random Variates , 1993, SODA '93.

[16]  Dan Alistarh,et al.  Fast and Exact Majority in Population Protocols , 2015, PODC.

[17]  Paul Bratley,et al.  A guide to simulation , 1983 .

[18]  David Eisenstat,et al.  Fast computation by population protocols with a leader , 2006, Distributed Computing.

[19]  Leszek Gasieniec,et al.  Fast Space Optimal Leader Election in Population Protocols , 2017, SODA.

[20]  Joe Kilian,et al.  Asymptotic distribution for the birthday problem with multiple coincidences, via an embedding of the collision process , 2013, Random Struct. Algorithms.

[21]  Sebastian Winkel,et al.  Super Scalar Sample Sort , 2004, ESA.

[22]  Linus Schrage,et al.  A guide to simulation, 2nd Edition , 1987 .

[23]  Robert Elsässer,et al.  Majority & Stabilization in Population Protocols , 2018, ArXiv.

[24]  E. Stadlober,et al.  Ratio of uniforms as a convenient method for sampling from classical discrete distributions , 1989, WSC '89.

[25]  Dan Alistarh,et al.  Time-Space Trade-offs in Population Protocols , 2016, SODA.

[26]  Colin Cooper,et al.  Brief Announcement: Population Protocols for Leader Election and Exact Majority with O(log2 n) States and O(log2 n) Convergence Time , 2017, PODC.

[27]  Colin Cooper,et al.  Population protocols for leader election and exact majority with O(log^2 n) states and O(log^2 n) convergence time , 2017, ArXiv.

[28]  Luca Cardelli,et al.  Programmable chemical controllers made from DNA. , 2013, Nature nanotechnology.

[29]  Luca Cardelli,et al.  The Cell Cycle Switch Computes Approximate Majority , 2012, Scientific Reports.

[30]  Matthew Cook,et al.  Computation with finite stochastic chemical reaction networks , 2008, Natural Computing.

[31]  Tsvi Kopelowitz,et al.  An O(log3/2 n) Parallel Time Population Protocol for Majority with O(log n) States , 2020, PODC.

[32]  Dan Alistarh,et al.  Space-Optimal Majority in Population Protocols , 2017, SODA.

[33]  Anish Arora,et al.  Maintaining Digital Clocks In Step , 1991, WDAG.

[34]  Kurt Mehlhorn,et al.  Maintaining Discrete Probability Distributions Optimally , 1993, ICALP.

[35]  Michael D. Vose,et al.  A Linear Algorithm For Generating Random Numbers With a Given Distribution , 1991, IEEE Trans. Software Eng..

[36]  Dan Alistarh,et al.  Polylogarithmic-Time Leader Election in Population Protocols , 2015, ICALP.

[37]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[38]  Moez Draief,et al.  Convergence Speed of Binary Interval Consensus , 2010, 2010 Proceedings IEEE INFOCOM.

[39]  Fabian Kuhn,et al.  Random Walks Revisited: Extensions of Pollard's Rho Algorithm for Computing Multiple Discrete Logarithms , 2001, Selected Areas in Cryptography.

[40]  David Soloveichik,et al.  Stable leader election in population protocols requires linear time , 2015, Distributed Computing.

[41]  George Giakkoupis,et al.  Optimal time and space leader election in population protocols , 2020, STOC.

[42]  Robert Elsässer,et al.  A Population Protocol for Exact Majority with O(log5/3 n) Stabilization Time and Theta(log n) States , 2018, DISC.

[43]  James Aspnes,et al.  An Introduction to Population Protocols , 2007, Bull. EATCS.

[44]  Sanguthevar Rajasekaran,et al.  Fast algorithms for generating discrete random variates with changing distributions , 1993, TOMC.