Digital neural circuits : from ions to networks

............................................................................................................... i Acknowledgements ............................................................................................. ii

[1]  Richard F. Thompson,et al.  Neural substrates of eyeblink conditioning: acquisition and retention. , 2003, Learning & memory.

[2]  Christofer Toumazou,et al.  Modeling Study of the Light Stimulation of a Neuron Cell With Channelrhodopsin-2 Mutants , 2011, IEEE Transactions on Biomedical Engineering.

[3]  J C Smith,et al.  Respiratory rhythm generation in neonatal and adult mammals: the hybrid pacemaker-network model. , 2000, Respiration physiology.

[4]  Patrick Degenaar,et al.  Photocycles of Channelrhodopsin‐2 , 2009, Photochemistry and photobiology.

[5]  George J. Augustine,et al.  Optogenetic probing of functional brain circuitry , 2011, Experimental physiology.

[6]  Theodore W Berger,et al.  A cortical neural prosthesis for restoring and enhancing memory , 2011, Journal of neural engineering.

[7]  Tadashi Yamazaki,et al.  Neural Modeling of an Internal Clock , 2005, Neural Computation.

[8]  Andrew S. Cassidy,et al.  Design of a one million neuron single FPGA neuromorphic system for real-time multimodal scene analysis , 2011, 2011 45th Annual Conference on Information Sciences and Systems.

[9]  Nikil D. Dutt,et al.  A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors , 2009, Neural Networks.

[10]  R. Traub,et al.  A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. , 1991, Journal of neurophysiology.

[11]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[12]  M. P. Nusbaum,et al.  A small-systems approach to motor pattern generation , 2002, Nature.

[13]  Patrick Degenaar,et al.  Optobionic vision—a new genetically enhanced light on retinal prosthesis , 2009, Journal of neural engineering.

[14]  Patrick Degenaar,et al.  A New Individually Addressable Micro-LED Array for Photogenetic Neural Stimulation , 2010, IEEE Transactions on Biomedical Circuits and Systems.

[15]  E. Kandel,et al.  Neuroscience thinks big (and collaboratively) , 2013, Nature Reviews Neuroscience.

[16]  Patrick Degenaar,et al.  A Processing Platform for Optoelectronic/Optogenetic Retinal Prosthesis , 2013, IEEE Transactions on Biomedical Engineering.

[17]  Eugene M. Izhikevich,et al.  Simple model of spiking neurons , 2003, IEEE Trans. Neural Networks.

[18]  Steven M. Burns,et al.  The design of an asynchronous microprocessor , 1989, CARN.

[19]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[20]  S Kawahara,et al.  Conditioned eyeblink response is impaired in mutant mice lacking NMDA receptor subunit NR2A , 1997, Neuroreport.

[21]  E. Marder,et al.  Computational model of electrically coupled, intrinsically distinct pacemaker neurons. , 2005, Journal of neurophysiology.

[22]  E. Hamdy,et al.  Dielectric based antifuse for logic and memory ICs , 1988, Technical Digest., International Electron Devices Meeting.

[23]  E. Marder,et al.  Ionic currents of the lateral pyloric neuron of the stomatogastric ganglion of the crab. , 1992, Journal of neurophysiology.

[24]  R. Normann,et al.  Thermal Impact of an Active 3-D Microelectrode Array Implanted in the Brain , 2007, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[25]  Steve B. Furber,et al.  Neural Systems Engineering , 2008, Computational Intelligence: A Compendium.

[26]  Wayne Luk,et al.  On-FPGA Communication Architectures and Design Factors , 2006, 2006 International Conference on Field Programmable Logic and Applications.

[27]  Robert J Butera,et al.  MRCI: a flexible real-time dynamic clamp system for electrophysiology experiments , 2004, Journal of Neuroscience Methods.

[28]  C. Heckman,et al.  Adjustable Amplification of Synaptic Input in the Dendrites of Spinal Motoneurons In Vivo , 2000, The Journal of Neuroscience.

[29]  A. Cassidy,et al.  FPGA Based Silicon Spiking Neural Array , 2007, 2007 IEEE Biomedical Circuits and Systems Conference.

[30]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[31]  Nicolas H. Franceschini,et al.  Bio-inspired optic flow sensors based on FPGA: Application to Micro-Air-Vehicles , 2007, Microprocess. Microsystems.

[32]  J. Schmahmann Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. , 2004, The Journal of neuropsychiatry and clinical neurosciences.

[33]  John A. White,et al.  GenNet: A Platform for Hybrid Network Experiments , 2011, Front. Neuroinform..

[34]  J. Barrett,et al.  Optogenetic approaches to retinal prosthesis , 2014, Visual Neuroscience.

[35]  R. Cuppens,et al.  An EEPROM for microprocessors and custom logic , 1985, IEEE Journal of Solid-State Circuits.

[36]  Stephen Grossberg,et al.  A neural model of timed response learning in the cerebellum , 1994, Neural Networks.

[37]  R. Ivry,et al.  The neural representation of time , 2004, Current Opinion in Neurobiology.

[38]  E. Marder,et al.  Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. III. Synaptic connections of electrically coupled pyloric neurons. , 1982, Journal of neurophysiology.

[39]  Liam McDaid,et al.  Hierarchical Network-on-Chip and Traffic Compression for Spiking Neural Network Implementations , 2012, 2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip.

[40]  Te-Long Chiu,et al.  An electrically alterable nonvolatile memory cell using a floating-gate structure , 1979 .

[41]  Gert Cauwenberghs,et al.  Neuromorphic Silicon Neuron Circuits , 2011, Front. Neurosci.

[42]  J. Miller,et al.  Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. IV. Network properties of pyloric system. , 1982, Journal of neurophysiology.

[43]  R. Yuste,et al.  The Brain Activity Map Project and the Challenge of Functional Connectomics , 2012, Neuron.

[44]  Misha Anne Mahowald,et al.  VLSI analogs of neuronal visual processing: a synthesis of form and function , 1992 .

[45]  Qiang Liu,et al.  Data-reuse exploration under an on-chip memory constraint for low-power FPGA-based systems , 2009, IET Comput. Digit. Tech..

[46]  Giacomo Indiveri,et al.  The Cerebellum Chip: an Analog VLSI Implementation of a Cerebellar Model of Classical Conditioning , 2004, NIPS.

[47]  P. Sah,et al.  Channels underlying neuronal calcium-activated potassium currents , 2002, Progress in Neurobiology.

[48]  Mischa Schwartz,et al.  Telecommunication networks: protocols, modeling and analysis , 1986 .

[49]  D. Frohman-Bentchkowsky,et al.  A fully-decoded 2048-bit electrically-programmable MOS ROM , 1971 .

[50]  R. H. Freeman,et al.  A 9000-gate user-programmable gate array , 1988, Proceedings of the IEEE 1988 Custom Integrated Circuits Conference.

[51]  Bo Yu,et al.  Towards neuro-silicon interface using reconfigurable dynamic clamping , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[52]  R.H. Lee,et al.  Methodology and Design Flow for Assisted Neural-Model Implementations in FPGAs , 2007, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[53]  J. C. Smith,et al.  Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. , 1999, Journal of neurophysiology.

[54]  P. Meyrand,et al.  A modulatory role for oxygen in shaping rhythmic motor output patterns of neuronal networks. , 2001, Respiration physiology.

[55]  Tadashi Yamazaki,et al.  A scalable FPGA-based cerebellum for passage-of-time representation , 2014, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[56]  Rodrigo Alvarez-Icaza,et al.  Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations , 2014, Proceedings of the IEEE.

[57]  Robert H. Lee,et al.  An FPGA-based approach to high-speed simulation of conductance-based neuron models , 2007, Neuroinformatics.

[58]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[59]  Alexandre Yakovlev,et al.  Connection-centric network for spiking neural networks , 2009, 2009 3rd ACM/IEEE International Symposium on Networks-on-Chip.

[60]  Guosong Liu,et al.  A Developmental Switch in Neurotransmitter Flux Enhances Synaptic Efficacy by Affecting AMPA Receptor Activation , 2001, Neuron.

[61]  J. W. Moore,et al.  Adaptive timing in neural networks: The conditioned response , 1988, Biological Cybernetics.

[62]  Simon W. Moore,et al.  Bluehive - A field-programable custom computing machine for extreme-scale real-time neural network simulation , 2012, 2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines.

[63]  Jørn Hounsgaard,et al.  An M‐like outward current regulates the excitability of spinal motoneurones in the adult turtle , 2002, The Journal of physiology.

[64]  Pamela Reinagel,et al.  Decoding visual information from a population of retinal ganglion cells. , 1997, Journal of neurophysiology.

[65]  Georgios Smaragdos,et al.  FPGA-based biophysically-meaningful modeling of olivocerebellar neurons , 2014, FPGA.

[66]  Tadashi Yamazaki,et al.  Realtime cerebellum: A large-scale spiking network model of the cerebellum that runs in realtime using a graphics processing unit , 2013, Neural Networks.

[67]  E. Marder,et al.  Multiple models to capture the variability in biological neurons and networks , 2011, Nature Neuroscience.

[68]  V. Dietz,et al.  The physiological basis of neurorehabilitation - locomotor training after spinal cord injury , 2013, Journal of NeuroEngineering and Rehabilitation.

[69]  Kwabena Boahen,et al.  Point-to-point connectivity between neuromorphic chips using address events , 2000 .

[70]  S. Siegelbaum,et al.  Molecular and Functional Heterogeneity of Hyperpolarization-Activated Pacemaker Channels in the Mouse CNS , 2000, The Journal of Neuroscience.

[71]  Carver A. Mead,et al.  Neuromorphic electronic systems , 1990, Proc. IEEE.

[72]  Ralph Etienne-Cummings,et al.  A Silicon Central Pattern Generator Controls Locomotion in Vivo , 2008, IEEE Transactions on Biomedical Circuits and Systems.

[73]  Florian Solzbacher,et al.  Long term in vitro functional stability and recording longevity of fully integrated wireless neural interfaces based on the Utah Slant Electrode Array , 2011, Journal of neural engineering.

[74]  Bo Wen,et al.  A Silicon Cochlea With Active Coupling , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[75]  Shigeru Tanaka,et al.  A spiking network model for passage-of-time representation in the cerebellum , 2007, The European journal of neuroscience.

[76]  E. Marder,et al.  Artificial electrical synapses in oscillatory networks. , 1992, Journal of neurophysiology.

[77]  R. Harris-Warrick,et al.  Physiological role of the transient potassium current in the pyloric circuit of the lobster stomatogastric ganglion. , 1992, Journal of neurophysiology.

[78]  Paras R. Patel,et al.  Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. , 2012, Nature materials.

[79]  Gert Cauwenberghs,et al.  A Multichip Neuromorphic System for Spike-Based Visual Information Processing , 2007, Neural Computation.

[80]  S. Hooper,et al.  Follower neurons in lobster (Panulirus interruptus) pyloric network regulate pacemaker period in complementary ways. , 2003, Journal of neurophysiology.

[81]  Greg Humphreys,et al.  How GPUs Work , 2007, Computer.

[82]  J. Rothwell Principles of Neural Science , 1982 .

[83]  M. Suzuki,et al.  A single-chip graphic display controller , 1981, 1981 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[84]  Joanna McGrath,et al.  Acquired brain injury , 2004 .

[85]  Gabrielle J. Gutierrez,et al.  Cancer Borealis Stomatogastric Nervous System Dissection , 2009, Journal of visualized experiments : JoVE.

[86]  Murray Shanahan,et al.  Accelerated simulation of spiking neural networks using GPUs , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[87]  Russell Tessier,et al.  FPGA Architecture: Survey and Challenges , 2008, Found. Trends Electron. Des. Autom..

[88]  E. Marder,et al.  Compensation for Variable Intrinsic Neuronal Excitability by Circuit-Synaptic Interactions , 2010, The Journal of Neuroscience.

[89]  K. Deisseroth,et al.  Optogenetic stimulation of a hippocampal engram activates fear memory recall , 2012, Nature.

[90]  Bruce R. Johnson,et al.  Dopamine modulation of calcium currents in pyloric neurons of the lobster stomatogastric ganglion. , 2003, Journal of neurophysiology.

[91]  Jim D. Garside,et al.  Overview of the SpiNNaker System Architecture , 2013, IEEE Transactions on Computers.

[92]  J C Rothwell,et al.  Suppression of motor cortical excitability by electrical stimulation over the cerebellum in ataxia , 1994, Annals of neurology.

[93]  E. Marder,et al.  Mathematical model of an identified stomatogastric ganglion neuron. , 1992, Journal of neurophysiology.

[94]  E. Marder,et al.  Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. , 2007, Annual review of physiology.

[95]  Shigeru Tanaka,et al.  Computational Models of Timing Mechanisms in the Cerebellar Granular Layer , 2009, The Cerebellum.

[96]  L. F Abbott,et al.  Lapicque’s introduction of the integrate-and-fire model neuron (1907) , 1999, Brain Research Bulletin.

[97]  Terrence J. Sejnowski,et al.  An Efficient Method for Computing Synaptic Conductances Based on a Kinetic Model of Receptor Binding , 1994, Neural Computation.

[98]  Steve B. Furber,et al.  The SpiNNaker Project , 2014, Proceedings of the IEEE.

[99]  M. Bear,et al.  A biophysically-based neuromorphic model of spike rate- and timing-dependent plasticity , 2011, Proceedings of the National Academy of Sciences.

[100]  E Marder,et al.  Modulation of the lobster pyloric rhythm by the peptide proctolin , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[101]  Tadashi Yamazaki,et al.  A real-time silicon cerebellum spiking neural model based on FPGA , 2014, 2014 International Symposium on Integrated Circuits (ISIC).

[102]  M. Fujita,et al.  Adaptive filter model of the cerebellum , 1982, Biological Cybernetics.

[103]  N. Dale,et al.  Spike‐independent release of ATP from Xenopus spinal neurons evoked by activation of glutamate receptors , 2002, The Journal of physiology.

[104]  K. Graubard,et al.  Pharmacologically and functionally distinct calcium currents of stomatogastric neurons. , 1998, Journal of neurophysiology.

[105]  E. Marder,et al.  Principles of rhythmic motor pattern generation. , 1996, Physiological reviews.

[106]  Peng Li,et al.  Simulation of large neuronal networks with biophysically accurate models on graphics processors , 2011, The 2011 International Joint Conference on Neural Networks.

[107]  J. W. Moore,et al.  Adaptively timed conditioned responses and the cerebellum: A neural network approach , 1989, Biological Cybernetics.

[108]  J. Miller,et al.  Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. II. Oscillatory properties of pyloric neurons. , 1982, Journal of neurophysiology.

[109]  J. Champagnat,et al.  Phasic and Long-Term Depression in Brainstem Nucleus Tractus Solitarius Neurons: Differing Roles of AMPA Receptor Desensitization , 1997, The Journal of Neuroscience.

[110]  S. A. Bamford,et al.  A VLSI Field-Programmable Mixed-Signal Array to Perform Neural Signal Processing and Neural Modeling in a Prosthetic System , 2012, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[111]  G. Rachmuth,et al.  A Component-Based FPGA Design Framework for Neuronal Ion Channel Dynamics Simulations , 2006, IEEE transactions on neural systems and rehabilitation engineering.

[112]  N. Donegan,et al.  A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. , 1997, Learning & memory.

[113]  Ran Ginosar,et al.  Scalable network-on-chip architecture for configurable neural networks , 2011, Microprocess. Microsystems.

[114]  Chi-Sang Poon,et al.  A scalable FPGA-based design for field programmable large-scale ion channel simulations , 2012, 22nd International Conference on Field Programmable Logic and Applications (FPL).

[115]  Allen I. Selverston,et al.  StdpC: A modern dynamic clamp , 2006, Journal of Neuroscience Methods.

[116]  John Y. Lin,et al.  A user's guide to channelrhodopsin variants: features, limitations and future developments , 2011, Experimental physiology.

[117]  Emanuela Galante,et al.  Psychological activities in neurorehabilitation: from research to clinical practice. , 2011, Giornale italiano di medicina del lavoro ed ergonomia.

[118]  Simon R. Schultz,et al.  A parallel spiking neural network simulator , 2009, 2009 International Conference on Field-Programmable Technology.

[119]  J. Hindmarsh,et al.  A model of neuronal bursting using three coupled first order differential equations , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[120]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[121]  Andrew S. Cassidy,et al.  Design of silicon brains in the nano-CMOS era: Spiking neurons, learning synapses and neural architecture optimization , 2013, Neural Networks.

[122]  B. Dworakowska,et al.  Ion channels-related diseases. , 2000, Acta biochimica Polonica.

[123]  W G Regehr,et al.  Timing of synaptic transmission. , 1999, Annual review of physiology.

[124]  G. Feng,et al.  Next-Generation Optical Technologies for Illuminating Genetically Targeted Brain Circuits , 2006, The Journal of Neuroscience.