Central Factorial Numbers and Values of Bernoulli and Euler Polynomials at Rationals
暂无分享,去创建一个
[1] Michael E. Hoffman. Derivative polynomials for tangent and secant , 1995 .
[2] Tom M. Apostol,et al. Dirichlet L-functions and character power sums , 1970 .
[3] Chung-Wei Ha,et al. EULERIAN POLYNOMIALS AND RELATED EXPLICIT FORMULAS , 2002 .
[4] I. J. Schwatt. An introduction to the operations with series , 1962 .
[5] Bennet S. Yee,et al. Incomplete higher order Gauss sums , 2003 .
[6] Richard Scoville,et al. Tangent numbers and operators , 1972 .
[7] Ching-Hua Chang,et al. A multiplication theorem for the Lerch zeta function and explicit representations of the Bernoulli and Euler polynomials , 2006 .
[8] Kai Wang,et al. Exponential sums of Lerch’s zeta functions , 1985 .
[9] Michael E. Hoffman. Derivative Polynomials, Euler Polynomials, and Associated Integer Sequences , 1999, Electron. J. Comb..
[10] Eugene P. Wigner,et al. Formulas and Theorems for the Special Functions of Mathematical Physics , 1966 .
[11] Donald E. Knuth,et al. Computation of Tangent, Euler, and Bernoulli Numbers* , 1967 .
[12] Paul L. Butzer,et al. Central factorial numbers; their main properties and some applications. , 1989 .
[13] Alexei Borodin,et al. Longest Increasing Subsequences of Random Colored Permutations , 1999, Electron. J. Comb..
[14] Jacek Klinowski,et al. Values of the Legendre chi and Hurwitz zeta functions at rational arguments , 1999, Math. Comput..