Bayesian Nonparametric Methods for Learning Markov Switching Processes

In this article, we explored a Bayesian nonparametric approach to learning Markov switching processes. This framework requires one to make fewer assumptions about the underlying dynamics, and thereby allows the data to drive the complexity of the inferred model. We began by examining a Bayesian nonparametric HMM, the sticky HDPHMM, that uses a hierarchical DP prior to regularize an unbounded mode space. We then considered extensions to Markov switching processes with richer, conditionally linear dynamics, including the HDP-AR-HMM and HDP-SLDS. We concluded by considering methods for transferring knowledge among multiple related time series. We argued that a featural representation is more appropriate than a rigid global clustering, as it encourages sharing of behaviors among objects while still allowing sequence-specific variability. In this context, the beta process provides an appealing alternative to the DP.

[1]  J. Kingman,et al.  Completely random measures. , 1967 .

[2]  D. Blackwell,et al.  Ferguson Distributions Via Polya Urn Schemes , 1973 .

[3]  Lawrence R. Rabiner,et al.  A tutorial on Hidden Markov Models , 1986 .

[4]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[5]  N. Hjort Nonparametric Bayes Estimators Based on Beta Processes in Models for Life History Data , 1990 .

[6]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[7]  M. Aoki,et al.  State space modeling of multiple time series , 1991 .

[8]  Chang‐Jin Kim,et al.  Dynamic linear models with Markov-switching , 1994 .

[9]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[10]  Mike K. P. So,et al.  A Stochastic Volatility Model With Markov Switching , 1998 .

[11]  Vladimir Pavlovic,et al.  Learning Switching Linear Models of Human Motion , 2000, NIPS.

[12]  Carl E. Rasmussen,et al.  Factorial Hidden Markov Models , 1997 .

[13]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[14]  Jernej Barbic,et al.  Segmenting Motion Capture Data into Distinct Behaviors , 2004, Graphics Interface.

[15]  Thomas L. Griffiths,et al.  Infinite latent feature models and the Indian buffet process , 2005, NIPS.

[16]  James M. Rehg,et al.  A data-driven approach to quantifying natural human motion , 2005, SIGGRAPH '05.

[17]  V. Jilkov,et al.  Survey of maneuvering target tracking. Part V. Multiple-model methods , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[18]  J. Pitman Combinatorial Stochastic Processes , 2006 .

[19]  Arnaud Doucet,et al.  Bayesian Inference for Dynamic Models with Dirichlet Process Mixtures , 2006, 2006 9th International Conference on Information Fusion.

[20]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[21]  James M. Rehg,et al.  Learning and Inferring Motion Patterns using Parametric Segmental Switching Linear Dynamic Systems , 2008, International Journal of Computer Vision.

[22]  Carlos M. Carvalho,et al.  Simulation-based sequential analysis of Markov switching stochastic volatility models , 2007, Comput. Stat. Data Anal..

[23]  Alan S. Willsky,et al.  Hierarchical Dirichlet processes for tracking maneuvering targets , 2007, 2007 10th International Conference on Information Fusion.

[24]  Michael I. Jordan,et al.  Hierarchical Beta Processes and the Indian Buffet Process , 2007, AISTATS.

[25]  Michael A. West,et al.  Dynamic matrix-variate graphical models , 2007 .

[26]  René Vidal,et al.  Identification of Hybrid Systems: A Tutorial , 2007, Eur. J. Control.

[27]  Michael I. Jordan,et al.  An HDP-HMM for systems with state persistence , 2008, ICML '08.

[28]  Giovanni Petris,et al.  Dynamic Linear Models with R , 2009 .

[29]  Michael I. Jordan,et al.  Nonparametric Bayesian Identification of Jump Systems with Sparse Dependencies , 2009 .

[30]  Michael I. Jordan,et al.  Sharing Features among Dynamical Systems with Beta Processes , 2009, NIPS.

[31]  Emily B. Fox,et al.  Bayesian nonparametric learning of complex dynamical phenomena , 2009 .