Faint and clustered components in exponential analysis

An important hurdle in multi-exponential analysis is the correct detection of the number of components in a multi-exponential signal and their subsequent identification. This is especially difficult if one or more of these terms are faint and/or covered by noise. We present an approach to tackle this problem and illustrate its usefulness in motor current signature analysis (MCSA), relaxometry (in FLIM and MRI) and magnetic resonance spectroscopy (MRS).

[1]  Tapan K. Sarkar,et al.  Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..

[2]  George Labahn,et al.  Symbolic-numeric sparse interpolation of multivariate polynomials , 2009, J. Symb. Comput..

[3]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[4]  Stephen J. Chapman,et al.  Electric Machinery Fundamentals , 1991 .

[5]  T. Regimbau,et al.  Identification of GW bursts in high noise using Pad\'e filtering , 2014 .

[6]  George Labahn,et al.  Symbolic-numeric sparse interpolation of multivariate polynomials , 2006, ISSAC '06.

[7]  Petre Stoica,et al.  A multicomponent T2 relaxometry algorithm for myelin water imaging of the brain , 2016, Magnetic resonance in medicine.

[8]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[9]  Annie Cuyt,et al.  Sparse Interpolation, the FFT Algorithm and FIR Filters , 2017, CASC.

[10]  J Nuttall,et al.  The convergence of Padé approximants of meromorphic functions , 1970 .

[11]  Olga L. Ibryaeva,et al.  An algorithm for computing a Padé approximant with minimal degree denominator , 2013, J. Comput. Appl. Math..

[12]  Mario Bertero,et al.  On the recovery and resolution of exponential relaxation rates from experimental data: a singular-value analysis of the Laplace transform inversion in the presence of noise , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  Jacek Gilewicz,et al.  Padé approximants and noise: a case of geometric series , 1997 .

[14]  Z Bajzer,et al.  Padé-Laplace method for analysis of fluorescence intensity decay. , 1989, Biophysical journal.

[15]  Wen-shin Lee,et al.  How to get high resolution results from sparse and coarsely sampled data , 2017, Applied and Computational Harmonic Analysis.

[16]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[17]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[18]  Emmanuel J. Cand Towards a Mathematical Theory of Super-Resolution , 2012 .

[19]  Harry Nyquist Certain Topics in Telegraph Transmission Theory , 1928 .

[20]  Mehmet Akar Detection of Rotor Bar Faults in Field Oriented Controlled Induction Motors , 2012 .

[21]  Erich Kaltofen,et al.  Early termination in Ben-Or/Tiwari sparse interpolation and a hybrid of Zippel's algorithm , 2000, ISSAC.

[22]  Daniel Bessis,et al.  Pade´ approximations in noise filtering , 1996 .

[23]  Richard H. Sherman,et al.  Chaotic communications in the presence of noise , 1993, Optics & Photonics.

[24]  Lie Xu,et al.  Improvement of the Hilbert Method via ESPRIT for Detecting Rotor Fault in Induction Motors at Low Slip , 2013, IEEE Transactions on Energy Conversion.

[25]  Don-Ha Hwang,et al.  High-Resolution Parameter Estimation Method to Identify Broken Rotor Bar Faults in Induction Motors , 2013, IEEE Transactions on Industrial Electronics.

[26]  Jacek Gilewicz,et al.  Padé approximants and noise: rational functions , 1999 .

[27]  K. Arun,et al.  State-space and singular-value decomposition-based approximation methods for the harmonic retrieval problem , 1983 .

[28]  H. Nyquist,et al.  Certain Topics in Telegraph Transmission Theory , 1928, Transactions of the American Institute of Electrical Engineers.

[29]  Ch. Pommerenke,et al.  Padé approximants and convergence in capacity , 1973 .

[30]  Lloyd N. Trefethen,et al.  Robust Padé Approximation via SVD , 2013, SIAM Rev..

[31]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[32]  Annie Cuyt,et al.  Towards unsupervised fluorescence lifetime imaging using low dimensional variable projection. , 2016, Optics express.

[33]  Piero Barone,et al.  On the distribution of poles of Padé approximants to the Z-transform of complex Gaussian white noise , 2005, J. Approx. Theory.