We study the S=1/2 spin chain with the Hamiltonian H=${\mathcal{J}}_{\mathit{j}=1}^{\mathit{L}\mathrm{\ensuremath{-}}1}$ {${\mathrm{\ensuremath{\sigma}}}_{2\mathit{j}}^{\mathit{x}}$${\mathrm{\ensuremath{\sigma}}}_{2\mathit{j}+1}^{\mathit{x}}$+${\mathrm{\ensuremath{\sigma}}}_{2\mathit{j}}^{\mathit{y}}$${\mathrm{\ensuremath{\sigma}}}_{2\mathit{j}+1}^{\mathit{y}}$ +\ensuremath{\lambda}${\mathrm{\ensuremath{\sigma}}}_{2\mathit{j}}^{\mathit{z}}$${\mathrm{\ensuremath{\sigma}}}_{2\mathit{j}+1}$} +\ensuremath{\beta}${\mathcal{J}}_{\mathit{j}=1}^{\mathit{L}}$ (1-${\mathrm{\ensuremath{\sigma}}}_{2\mathit{j}\mathrm{\ensuremath{-}}1}$\ensuremath{\cdot}${\mathrm{\ensuremath{\sigma}}}_{2\mathit{j}}$), where ${\mathrm{\ensuremath{\sigma}}}_{\mathit{i}}$=(${\mathrm{\ensuremath{\sigma}}}_{\mathit{i}}^{\mathit{x}}$,${\mathrm{\ensuremath{\sigma}}}_{\mathit{i}}^{\mathit{y}}$,${\mathrm{\ensuremath{\sigma}}}_{\mathit{i}}^{\mathit{z}}$) are the Pauli matrices. We find that a nonlocal unitary transformation reveals the hidden ${\mathit{Z}}_{2}$\ifmmode\times\else\texttimes\fi{}${\mathit{Z}}_{2}$ symmetry of the system. It has been argued that a similar hidden ${\mathit{Z}}_{2}$\ifmmode\times\else\texttimes\fi{}${\mathit{Z}}_{2}$ symmetry of the S=1 chain is fully broken when and only when the system exhibits the Haldane gap. We prove that the present system exhibits both an excitation gap and a full breaking of the hidden ${\mathit{Z}}_{2}$\ifmmode\times\else\texttimes\fi{}${\mathit{Z}}_{2}$ symmetry in a range of the parameter space including the line \ensuremath{\beta}=0, \ensuremath{\lambda}g-1. We argue that the range with such properties indeed extends to the limit \ensuremath{\beta}\ensuremath{\rightarrow}\ensuremath{\infty} in which the present model reduces to the S=1 spin chain. This observation provides support of Hida's conclusion that the Haldane gap in the S=1 chain is continuously connected to the gap in the decoupled S=1/2 system with \ensuremath{\beta}=0.