Proof of Convergence for a Global Optimization Algorithm for Problems with Ordinary Differential Equations

A deterministic spatial branch and bound global optimization algorithm for problems with ordinary differential equations in the constraints has been developed by Papamichail and Adjiman [A rigorous global optimization algorithm for problems with ordinary differential equations. J. Glob. Optim. 24, 1–33]. In this work, it is shown that the algorithm is guaranteed to converge to the global solution. The proof is based on showing that the selection operation is bound improving and that the bounding operation is consistent. In particular, it is shown that the convex relaxation techniques used in the algorithm for the treatment of the dynamic information ensure bound improvement and consistency are achieved.

[1]  S. Oh,et al.  Use of orthogonal collocation method in optimal control problems , 1977 .

[2]  Kok Lay Teo,et al.  Control parametrization: A unified approach to optimal control problems with general constraints , 1988, Autom..

[3]  A. Neumaier,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .

[4]  C. K. Lee,et al.  Global Dynamic Optimization of Linear Hybrid Systems , 2004 .

[5]  J. E. Falk,et al.  An Algorithm for Separable Nonconvex Programming Problems , 1969 .

[6]  Christodoulos A. Floudas,et al.  Rigorous convex underestimators for general twice-differentiable problems , 1996, J. Glob. Optim..

[7]  C. Adjiman,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs—II. Implementation and computational results , 1998 .

[8]  R. Sargent,et al.  Solution of a Class of Multistage Dynamic Optimization Problems. 2. Problems with Path Constraints , 1994 .

[9]  D. Himmelblau,et al.  Optimal control via collocation and non-linear programming , 1975 .

[10]  P. I. Barton,et al.  Global Solution of Optimization Problems with Parameter-Embedded Linear Dynamic Systems , 2004 .

[11]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[12]  R.W.H. Sargent,et al.  Off Line Computation of Optimum Controls for a Plate Distillation Column* Calcul en dehors du circuit des commandes optimales pour une colonne de distillation h plateaux Off-line-Berechnung optimaler Regelungen f'tir den Boden einer Destillationskolonne , 1970 .

[13]  Christodoulos A Floudas,et al.  Global minimum potential energy conformations of small molecules , 1994, J. Glob. Optim..

[14]  Claire S. Adjiman,et al.  A Rigorous Global Optimization Algorithm for Problems with Ordinary Differential Equations , 2002, J. Glob. Optim..

[15]  Christodoulos A. Floudas,et al.  Deterministic Global Optimization in Nonlinear Optimal Control Problems , 2000, J. Glob. Optim..

[16]  Claire S. Adjiman,et al.  Global optimization of dynamic systems , 2004, Comput. Chem. Eng..

[17]  C. Floudas,et al.  Global Optimization for the Parameter Estimation of Differential-Algebraic Systems , 2000 .

[18]  Constantinos C. Pantelides,et al.  Global Optimisation of General Process Models , 1996 .

[19]  Christodoulos A. Floudas,et al.  αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..

[20]  G. R. Sullivan,et al.  The development of an efficient optimal control package , 1978 .

[21]  James E. Falk,et al.  Jointly Constrained Biconvex Programming , 1983, Math. Oper. Res..

[22]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[23]  W. Walter Differential and Integral Inequalities , 1970 .