Intermittence and Space-Time Fractional Stochastic Partial Differential Equations

AbstractWe consider time fractional stochastic heat type equation ∂tβut(x)=−ν(−Δ)α/2ut(x)+It1−β[σ(u)W⋅(t,x)]$$\partial^{\beta}_{t}u_{t}(x)=-\nu(-{\Delta})^{\alpha/2} u_{t}(x)+I^{1-\beta}_{t}[\sigma(u)\overset{\cdot}{W}(t,x)] $$in (d + 1) dimensions, where ν > 0, β ∈ (0, 1), α ∈ (0, 2], d<min{2,β−1}α$d<\min \{2,\beta ^{-1}\}\alpha $, ∂tβ$\partial ^{\beta }_{t}$ is the Caputo fractional derivative, −(−Δ)α/2 is the generator of an isotropic stable process, W⋅(t,x)$\overset {\cdot }{W}(t,x)$ is space-time white noise, and σ:ℝ→ℝ$\sigma :\mathbb {R}\to \mathbb {R}$ is Lipschitz continuous. The time fractional stochastic heat type equations might be used to model phenomenon with random effects with thermal memory. We prove: (i) absolute moments of the solutions of this equation grows exponentially; and (ii) the distances to the origin of the farthest high peaks of those moments grow exactly linearly with time. These results extend the results of Foondun and Khoshnevisan (Electron. J. Probab. 14(21), 548–568, 2009) and Conus and Khoshnevisan (Probab. Theory Relat. Fields 152(3–4), 681–701, 2012) on the parabolic stochastic heat equations.

[1]  R. Nigmatullin The Realization of the Generalized Transfer Equation in a Medium with Fractal Geometry , 1986, January 1.

[2]  Erkan Nane Fractional Cauchy Problems on Bounded Domains: Survey of Recent Results , 2010, 1004.1577.

[3]  J. B. Walsh,et al.  An introduction to stochastic partial differential equations , 1986 .

[4]  B. Rozovskii,et al.  Kinematic dynamo and intermittence in a turbulent flow , 1993 .

[5]  W. Wyss The fractional diffusion equation , 1986 .

[6]  Davar Khoshnevisan,et al.  Analysis Of Stochastic Partial Differential Equations , 2017 .

[7]  Yaozhong Hu,et al.  Fractional Diffusion in Gaussian Noisy Environment , 2015, 1502.05514.

[8]  Arak M. Mathai,et al.  Special Functions for Applied Scientists , 2008 .

[9]  Heikki Arponen,et al.  Dynamo Effect in the Kraichnan Magnetohydrodynamic Turbulence , 2006, nlin/0610023.

[10]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[11]  W. Feller,et al.  An Introduction to Probability Theory and Its Applications, Vol. II , 1972, The Mathematical Gazette.

[12]  D. Khoshnevisan,et al.  On the existence and position of the farthest peaks of a family of stochastic heat and wave equations , 2010, 1001.4759.

[13]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[14]  D. Khoshnevisan,et al.  Semi-discrete semi-linear parabolic SPDEs ∗ , 2013, 1311.2199.

[15]  Arak M. Mathai,et al.  Mittag-Leffler Functions and Their Applications , 2009, J. Appl. Math..

[16]  M. Meerschaert,et al.  FRACTAL DIMENSIONS FOR CONTINUOUS TIME RANDOM WALK LIMITS , 2011, 1102.0444.

[17]  M. Meerschaert,et al.  FRACTAL DIMENSION RESULTS FOR CONTINUOUS TIME RANDOM WALKS. , 2013, Statistics & probability letters.

[18]  Le Chen,et al.  The nonlinear stochastic heat equation with rough initial data:a summary of some new results , 2012, 1210.1690.

[19]  Mark M Meerschaert,et al.  INVERSE STABLE SUBORDINATORS. , 2013, Mathematical modelling of natural phenomena.

[20]  Zhen-Qing Chen,et al.  Fractional time stochastic partial differential equations , 2014, 1404.1546.

[21]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[22]  Mark M. Meerschaert,et al.  Limit theorems for continuous-time random walks with infinite mean waiting times , 2004, Journal of Applied Probability.

[23]  D. Khoshnevisan,et al.  Intermittence and nonlinear parabolic stochastic partial differential equations , 2008, 0805.0557.

[24]  Lluís Quer-Sardanyons,et al.  Stochastic integrals for spde's: a comparison , 2010, 1001.0856.

[25]  Thomas Simon,et al.  Comparing Fréchet and positive stable laws , 2013, 1310.1888.

[26]  Luisa Beghin,et al.  Fractional diffusion equations and processes with randomly varying time. , 2011, 1102.4729.

[27]  Erkan Nane,et al.  Space-time fractional stochastic partial differential equations , 2014, 1409.7366.

[28]  Mark M. Meerschaert,et al.  Fractional Cauchy problems on bounded domains , 2008, 0802.0673.

[29]  Mark M. Meerschaert,et al.  STOCHASTIC SOLUTIONS FOR FRACTIONAL CAUCHY PROBLEMS , 2003 .

[30]  R. Carmona,et al.  Parabolic Anderson Problem and Intermittency , 1994 .