Wind Magnetic Clouds for 2010 – 2012: Model Parameter Fittings, Associated Shock Waves, and Comparisons to Earlier Periods

[1]  R. Lepping,et al.  Yearly Comparison of Magnetic Cloud Parameters, Sunspot Number, and Interplanetary Quantities for the First 18 Years of the Wind Mission , 2015 .

[2]  R. Lepping,et al.  Comparisons of Characteristics of Magnetic Clouds and Cloud-Like Structures During 1995 – 2012 , 2014, Solar Physics.

[3]  J. Richardson,et al.  SUN-TO-EARTH CHARACTERISTICS OF TWO CORONAL MASS EJECTIONS INTERACTING NEAR 1 AU: FORMATION OF A COMPLEX EJECTA AND GENERATION OF A TWO-STEP GEOMAGNETIC STORM , 2014, 1409.2954.

[4]  J. Luhmann,et al.  Magnetic clouds and origins in STEREO era , 2014 .

[5]  N. Lugaz,et al.  A new class of complex ejecta resulting from the interaction of two CMEs and its expected geoeffectiveness , 2014, 1402.1075.

[6]  L. Burlaga,et al.  Global Configuration of a Magnetic Cloud , 2013 .

[7]  K. Marubashi Interplanetary Magnetic Flux Ropes and Solar Filaments , 2013 .

[8]  J. Gosling Coronal Mass Ejections: An Overview , 2013 .

[9]  D. Rust,et al.  The Field Configuration of Magnetic Clouds and the Solar Cycle , 2013 .

[10]  R. Lepping,et al.  Magnetic Clouds at/near the 2007 – 2009 Solar Minimum: Frequency of Occurrence and Some Unusual Properties , 2011 .

[11]  A. Vourlidas,et al.  DERIVING THE PHYSICAL PARAMETERS OF A SOLAR EJECTION WITH AN ISOTROPIC MAGNETOHYDRODYNAMIC EVOLUTIONARY MODEL , 2011 .

[12]  A. Rouillard,et al.  EMPIRICAL RECONSTRUCTION AND NUMERICAL MODELING OF THE FIRST GEOEFFECTIVE CORONAL MASS EJECTION OF SOLAR CYCLE 24 , 2011 .

[13]  R. Lepping,et al.  Statistical Comparison of Magnetic Clouds with Interplanetary Coronal Mass Ejections for Solar Cycle 23 , 2011 .

[14]  J. Sauvaud,et al.  Multiple, distant (40°) in situ observations of a magnetic cloud and a corotating interaction region complex , 2010 .

[15]  A. Galvin,et al.  STEREO and Wind observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5–7 April 2010 , 2010, 1010.4150.

[16]  Hilary V. Cane,et al.  Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23 (1996 – 2009): Catalog and Summary of Properties , 2010 .

[17]  R. Howard,et al.  AN EMPIRICAL RECONSTRUCTION OF THE 2008 APRIL 26 CORONAL MASS EJECTION , 2009 .

[18]  C. Farrugia,et al.  Exploring the global shock scenario at multiple points between sun and earth: The solar transients launched on January 1 and September 23, 1978 , 2009 .

[19]  I. Sokolov,et al.  Three-dimensional MHD Simulation of the 2003 October 28 Coronal Mass Ejection: Comparison with LASCO Coronagraph Observations , 2008, 0805.3707.

[20]  R. Lepping,et al.  Long-duration magnetic clouds: a comparison of analyses using torus- and cylinder-shaped flux rope models , 2007 .

[21]  N. Gopalswamy Properties of Interplanetary Coronal Mass Ejections , 2007 .

[22]  Nat Gopalswamy,et al.  Relationships Among Magnetic Clouds, CMES, and Geomagnetic Storms , 2006 .

[23]  A. Szabo,et al.  A summary of WIND magnetic clouds for years 1995-2003: model-fitted parameters, associated errors and classifications , 2006 .

[24]  R. Lepping,et al.  Automatic identification of magnetic clouds and cloud-like regions at 1 AU: occurrence rate and other properties , 2005 .

[25]  C. Farrugia,et al.  Geometric considerations of the evolution of magnetic flux ropes. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  J. Steinberg,et al.  Halo-coronal mass ejections near the 23rd solar minimum: lift-off, inner heliosphere, and in situ (1 AU) signatures , 2002 .

[27]  J. Richardson,et al.  The Bastille day Shock and Merged Interaction Region at 63 au: Voyager 2 Observations , 2001 .

[28]  A. Szabo,et al.  Correction to: “Interplanetary fast shocks and associated drivers observed through the 23rd solar minimum by Wind over its first 2.5 years” by D. B. Berdichevsky et al. , 2001 .

[29]  A. Szabo,et al.  Interplanetary fast shocks and associated drivers observed through the 23rd solar minimum by Wind over its first 2.5 years , 2000 .

[30]  J. Luhmann,et al.  Solar cycle evolution of the structure of magnetic clouds in the inner heliosphere , 1998 .

[31]  T. Kosugi,et al.  On the relationship between coronal mass ejections and magnetic clouds , 1998 .

[32]  V. Bothmer,et al.  The structure and origin of magnetic clouds in the solar wind , 1997 .

[33]  J. Slavin,et al.  Analysis of Magnetotail Flux Ropes with Strong Core Fields : ISEE 3 Observations , 1996 .

[34]  M. Dryer Interplanetary studies: Propagation of disturbances between the Sun and the magnetosphere , 1994 .

[35]  L. Burlaga,et al.  Dynamics of aging magnetic clouds , 1993 .

[36]  L. Burlaga,et al.  Magnetic field structure of interplanetary magnetic clouds at 1 AU , 1990 .

[37]  L. Burlaga,et al.  Magnetic clouds and force‐free fields with constant alpha , 1988 .

[38]  L. Burlaga,et al.  Interplanetary magnetic clouds at 1 AU , 1982 .

[39]  F. Mariani,et al.  Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP-8 observations , 1981 .

[40]  John W. Belcher,et al.  A statistical study of the properties of interplanetary coronal mass ejections from 0.3 to 5.4 AU , 2005 .

[41]  M. Vandas,et al.  Magnetic clouds of oblate shapes , 2005 .

[42]  A. Szabo,et al.  Upstream shocks and interplanetary magnetic cloud speed and expansion: Sun, WIND, and Earth observations , 2002 .

[43]  S. Wu,et al.  Numerical Magnetohydrodynamic (MHD) Modeling of Coronal Mass Ejections (CMEs) , 2001 .

[44]  J. Slavin,et al.  Small‐scale magnetic flux ropes in the solar wind , 2000 .

[45]  L. Burlaga,et al.  A comparative study of dynamically expanding force-free, constant-alpha magnetic configurations with applications to magnetic clouds , 1992 .