Thermal anisotropy in nano-crystalline MoS2 thin films.

In this work, we grow thin MoS2 films (50-150 nm) uniformly over large areas (>1 cm(2)) with strong basal plane (002) or edge plane (100) orientations to characterize thermal anisotropy. Measurement results are correlated with molecular dynamics simulations of thermal transport for perfect and defective MoS2 crystals. The correlation between predicted (simulations) and measured (experimental) thermal conductivity are attributed to factors such as crystalline domain orientation and size, thereby demonstrating the importance of thermal boundary scattering in limiting thermal conductivity in nano-crystalline MoS2 thin films. Furthermore, we demonstrate that the cross-plane thermal conductivity of the films is strongly impacted by exposure to ambient humidity.

[1]  E. Pop,et al.  Thermal properties of graphene: Fundamentals and applications , 2012, 1301.6181.

[2]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[3]  Li Shi,et al.  Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. , 2013, Nano letters.

[4]  Satyaprakash Sahoo,et al.  Temperature-Dependent Raman Studies and Thermal Conductivity of Few-Layer MoS2 , 2013 .

[5]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[6]  D. Cahill Analysis of heat flow in layered structures for time-domain thermoreflectance , 2004 .

[7]  T. Spalvins Tribological properties of sputtered MoS2 films in relation to film morphology , 1980 .

[8]  Li Shi,et al.  In-plane thermal conductivity of disordered layered WSe2 and (W)x(WSe2)y superlattice films , 2007 .

[9]  Alan J. H. McGaughey,et al.  Phonon transport in molecular dynamics simulations: Formulation and thermal conductivity prediction. , 2006 .

[10]  N. Brown,et al.  An XPS study of the surface modification of natural MoS2 following treatment in an RF-oxygen plasma , 1998 .

[11]  V. Varshney,et al.  MD Simulations of Molybdenum Disulphide (MoS2): Force-Field Parameterization and Thermal Transport Behavior , 2010 .

[12]  G. A. Slack,et al.  Anisotropic Thermal Conductivity of Pyrolytic Graphite , 1962 .

[13]  S. Perry,et al.  The role of water in modifying friction within MoS2 sliding interfaces. , 2010, ACS applied materials & interfaces.

[14]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[15]  Pinshane Y. Huang,et al.  Graphene and boron nitride lateral heterostructures for atomically thin circuitry , 2012, Nature.

[16]  M. R. Hilton,et al.  Oxygen substitution in sputter-deposited MoS2 films studied by extended X-ray absorption fine structure, X-ray photoelectron spectroscopy and X-ray diffraction , 1990 .

[17]  B. Stupp Synergistic effects of metals co-sputtered with MoS2 , 1981 .

[18]  M. S. Abrahams,et al.  Heat capacity and thermal conductivity of hexagonal pyrolytic boron nitride , 1976 .

[19]  J. Wilcoxon,et al.  Catalytic Properties of Single Layers of Transition Metal Sulfide Catalytic Materials , 2005 .

[20]  Paul G. Klemens,et al.  Thermal Resistance due to Point Defects at High Temperatures , 1960 .

[21]  Paul D. Fleischauer,et al.  A comparison of oxidation and oxygen substitution in MoS2 solid film lubricants , 1999 .

[22]  M. G. Holland,et al.  Thermal Conductivity of Pyrolytic Graphite at Low Temperatures. I. Turbostratic Structures , 1964 .

[23]  P M Campbell,et al.  Chemical vapor sensing with monolayer MoS2. , 2013, Nano letters.

[24]  W. Jamison,et al.  Friction Characteristics of Transition-Metal Disulfides and Diselenides , 1971 .

[25]  D. Cahill,et al.  Synthesis and properties of turbostratically disordered, ultrathin WSe 2 films , 2010 .

[26]  C. Muratore,et al.  Control of molybdenum disulfide basal plane orientation during coating growth in pulsed magnetron sputtering discharges , 2009 .

[27]  R. Fivaz,et al.  Mobility of Charge Carriers in Semiconducting Layer Structures , 1967 .

[28]  A. Roy,et al.  Yttria-stabilized zirconia-based composites with adaptive thermal conductivity , 2010 .

[29]  Paul Zschack,et al.  Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals , 2007, Science.

[30]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[31]  V. Varshney,et al.  Cross-plane thermal properties of transition metal dichalcogenides , 2013 .

[32]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[33]  Xiaofeng Qian,et al.  Strain-engineered artificial atom as a broad-spectrum solar energy funnel , 2012, Nature Photonics.

[34]  E. Kaschnitz,et al.  Thermophysical properties of Ni80Cr20 , 2009 .