Identifying Efficiently Solvable Cases of Max CSP

In this paper we study the complexity of the maximum constraint satisfaction problem (Max CSP) over an arbitrary finite domain. We describe a novel connection between this problem and the supermodular function maximization problem (which is dual to the submodular function minimization problem). Using this connection, we are able to identify large classes of efficiently solvable subproblems of Max CSP arising from certain restrictions on the constraint types. Until now, the only known polynomial-time solvable cases for this form of optimization problem were restricted to constraints over a 2-valued (Boolean) domain. Here we obtain the first examples of general families of efficiently solvable cases of Max CSP for arbitrary finite domains, by considering supermodular functions on finite lattices. Finally, we show that the equality constraint over a non-Boolean domain is non-supermodular, and, when combined with some simple unary constraints, gives rise to cases of Max CSP which are hard even to approximate.

[1]  Michel X. Goemans,et al.  Minimizing submodular functions over families of sets , 1995, Comb..

[2]  D. M. Topkis Supermodularity and Complementarity , 1998 .

[3]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[4]  Peter Jeavons,et al.  On the Algebraic Structure of Combinatorial Problems , 1998, Theor. Comput. Sci..

[5]  H. Narayanan Submodular functions and electrical networks , 1997 .

[6]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[7]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[8]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[9]  Rainer E. Burkard,et al.  Perspectives of Monge Properties in Optimization , 1996, Discret. Appl. Math..

[10]  Peter Jeavons,et al.  Quantified Constraints: Algorithms and Complexity , 2003, CSL.

[11]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[12]  Satoru Fujishige,et al.  Submodular functions and optimization , 1991 .

[13]  Venkatesan Guruswami,et al.  Is Constraint Satisfaction Over Two Variables Always Easy? , 2002, RANDOM.

[14]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[15]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraints on a three-element set , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[16]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[17]  Akiyoshi Shioura,et al.  Minimization of an M-convex Function , 1998, Discret. Appl. Math..

[18]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[19]  R. Udiger Rudolf Recognition of D-dimensional Monge Arrays , 1992 .

[20]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[21]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[22]  Rajeev Motwani,et al.  A combinatorial algorithm for MAX CSP , 2003, Inf. Process. Lett..

[23]  Mihalis Yannakakis,et al.  The Complexity of Multiterminal Cuts , 1994, SIAM J. Comput..

[24]  Giorgio Gambosi,et al.  Complexity and Approximation , 1999, Springer Berlin Heidelberg.

[25]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[26]  Andrei A. Bulatov,et al.  Tractable conservative constraint satisfaction problems , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[27]  Peter Jonsson,et al.  Boolean constraint satisfaction: complexity results for optimization problems with arbitrary weights , 2000, Theor. Comput. Sci..

[28]  Andrew V. Goldberg,et al.  A new approach to the maximum flow problem , 1986, STOC '86.