Solving 0-1 knapsack problems based on amoeboid organism algorithm

The 0-1 knapsack problem is an open issue in discrete optimization problems, which plays an important role in real applications. In this paper, a new bio-inspired model is proposed to solve this problem. The proposed method has three main steps. First, the 0-1 knapsack problem is converted into a directed graph by the network converting algorithm. Then, for the purpose of using the amoeboid organism model, the longest path problem is transformed into the shortest path problem. Finally, the shortest path problem can be well handled by the amoeboid organism algorithm. Numerical examples are given to illustrate the efficiency of the proposed model.

[1]  Kamran Zamanifar,et al.  QoS decomposition for service composition using genetic algorithm , 2013, Appl. Soft Comput..

[2]  Jianhua Wu,et al.  Solving 0-1 knapsack problem by a novel global harmony search algorithm , 2011, Appl. Soft Comput..

[3]  B. John Oommen,et al.  Learning Automata-Based Solutions to the Nonlinear Fractional Knapsack Problem With Applications to Optimal Resource Allocation , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[4]  Majid Darehmiraki,et al.  A surface-based DNA algorithm for the solving binary knapsack problem , 2007, Appl. Math. Comput..

[5]  Liu Zheng Using Watering Algorithm to Find the Optimal Paths of a Maze , 2007 .

[6]  Zhongsheng Hua,et al.  An effective genetic algorithm approach to large scale mixed integer programming problems , 2006, Appl. Math. Comput..

[7]  T. Nakagaki,et al.  Path finding by tube morphogenesis in an amoeboid organism. , 2001, Biophysical chemistry.

[8]  Jiming Liu,et al.  Modeling and Restraining Mobile Virus Propagation , 2013, IEEE Transactions on Mobile Computing.

[9]  Gerhard Wäscher,et al.  An improved typology of cutting and packing problems , 2007, Eur. J. Oper. Res..

[10]  Ning Zhong,et al.  Network Immunization with Distributed Autonomy-Oriented Entities , 2011, IEEE Transactions on Parallel and Distributed Systems.

[11]  Esra Bas,et al.  A capital budgeting problem for preventing workplace mobbing by using analytic hierarchy process and fuzzy 0-1 bidimensional knapsack model , 2011, Expert Syst. Appl..

[12]  George Mavrotas,et al.  Selection among ranked projects under segmentation, policy and logical constraints , 2008, Eur. J. Oper. Res..

[13]  Rajeev Kumar,et al.  Assessing solution quality of biobjective 0-1 knapsack problem using evolutionary and heuristic algorithms , 2010, Appl. Soft Comput..

[14]  S. Salhi,et al.  A survey of effective heuristics and their application to a variety of knapsack problems , 2007 .

[15]  John E. Beasley,et al.  A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.

[16]  Kathrin Klamroth,et al.  Dynamic programming based algorithms for the discounted {0-1} knapsack problem , 2012, Appl. Math. Comput..

[17]  Andreas Bortfeldt,et al.  A genetic algorithm for the two-dimensional knapsack problem with rectangular pieces , 2009, Int. Trans. Oper. Res..

[18]  Mhand Hifi,et al.  An exact algorithm for the knapsack sharing problem , 2005, Comput. Oper. Res..

[19]  Rachid Ellaia,et al.  A new hybrid method for solving global optimization problem , 2011, Appl. Math. Comput..

[20]  Ernesto Costa,et al.  Multidimensional Knapsack Problem: A Fitness Landscape Analysis , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[21]  David K. Smith Network Flows: Theory, Algorithms, and Applications , 1994 .

[22]  Kusum Deep,et al.  A Modified Binary Particle Swarm Optimization for Knapsack Problems , 2012, Appl. Math. Comput..

[23]  Farhad Ghassemi Tari,et al.  Development of a hybrid dynamic programming approach for solving discrete nonlinear knapsack problems , 2007, Appl. Math. Comput..

[24]  Mario J. Pérez-Jiménez,et al.  A Linear-Time Solution to the Knapsack Problem Using P Systems with Active Membranes , 2003, Workshop on Membrane Computing.

[25]  Rumen Andonov,et al.  A dynamic programming based reduction procedure for the multidimensional 0-1 knapsack problem , 2008, Eur. J. Oper. Res..

[26]  Heitor Silvério Lopes,et al.  Particle Swarm Optimization for the Multidimensional Knapsack Problem , 2007, ICANNGA.

[27]  José Rui Figueira,et al.  Solving the bi-objective multi-dimensional knapsack problem exploiting the concept of core , 2009, Appl. Math. Comput..

[28]  F. Chan,et al.  IFSJSP: A novel methodology for the Job-Shop Scheduling Problem based on intuitionistic fuzzy sets , 2013 .

[29]  T. Nakagaki,et al.  Intelligence: Maze-solving by an amoeboid organism , 2000, Nature.

[30]  José Rui Figueira,et al.  Solving bicriteria 0-1 knapsack problems using a labeling algorithm , 2003, Comput. Oper. Res..

[31]  Hanxiao Shi,et al.  Solution to 0/1 Knapsack Problem Based on Improved Ant Colony Algorithm , 2006, 2006 IEEE International Conference on Information Acquisition.

[32]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[33]  Fariborz Jolai,et al.  Exact algorithm for bi-objective 0-1 knapsack problem , 2007, Appl. Math. Comput..

[34]  Min Kong,et al.  A new ant colony optimization algorithm for the multidimensional Knapsack problem , 2008, Comput. Oper. Res..

[35]  Sankaran Mahadevan,et al.  Fuzzy Dijkstra algorithm for shortest path problem under uncertain environment , 2012, Appl. Soft Comput..

[36]  Guido Perboli,et al.  The three-dimensional knapsack problem with balancing constraints , 2012, Appl. Math. Comput..

[37]  Jacek Blazewicz,et al.  The Knapsack-Lightening problem and its application to scheduling HRT tasks , 2009 .

[38]  Tung Khac Truong,et al.  Chemical reaction optimization with greedy strategy for the 0-1 knapsack problem , 2013, Appl. Soft Comput..

[39]  Zili Zhang,et al.  A biologically inspired solution for fuzzy shortest path problems , 2013, Appl. Soft Comput..

[40]  Ke Chen,et al.  Applied Mathematics and Computation , 2022 .

[41]  Hans Kellerer,et al.  Fully Polynomial Approximation Schemes for a Symmetric Quadratic Knapsack Problem and its Scheduling Applications , 2010, Algorithmica.

[42]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[43]  A. Tero,et al.  Rules for Biologically Inspired Adaptive Network Design , 2010, Science.

[44]  Daniel Vanderpooten,et al.  Solving efficiently the 0-1 multi-objective knapsack problem , 2009, Comput. Oper. Res..

[45]  Itamar Arel,et al.  A condensation-based application of Cramer's rule for solving large-scale linear systems , 2012, J. Discrete Algorithms.

[46]  Yong Deng,et al.  Route selection for emergency logistics management: A bio-inspired algorithm , 2013 .

[47]  Nikitas J. Dimopoulos,et al.  Resource allocation on computational grids using a utility model and the knapsack problem , 2009, Future Gener. Comput. Syst..

[48]  A. Tero,et al.  A mathematical model for adaptive transport network in path finding by true slime mold. , 2007, Journal of theoretical biology.

[49]  Mhand Hifi,et al.  The Knapsack Sharing Problem: A Tree Search Exact Algorithm , 2010 .

[50]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[51]  Sheldon H. Jacobson,et al.  Algorithms for the bounded set-up knapsack problem , 2007, Discret. Optim..