An improved database for the 9μm region of the formic acid spectrum

Abstract The 9 μ m region of the formic acid spectrum is associated with the strong ν 6 band. Located in an atmospheric window, its sharp Q-branch structure near 1105 cm - 1 is commonly used to probe tropospheric formic acid by infrared remote sensing techniques. Retrieval of HCOOH concentrations usually rely on spectroscopic information available in atmospheric databases such as HITRAN and GEISA. The intensity information available therein is a factor of about 2 lower than laboratory measurements. Following our recent contribution [Vander Auwera J, Didriche K, Perrin A, Keller F. Absolute line intensities for formic acid and dissociation constant of the dimer. J Chem Phys 2007;126:124311], we generated a new set of line parameters and show that it provides a significantly improved modeling of the ν 6 spectral region of formic acid.

[1]  D. Davis,et al.  Aqueous-phase source of formic acid in clouds , 1983, Nature.

[2]  P. Geerlings,et al.  Ab initio and LMO studies on the integrated intensities of infrared absorption bands of polyatomic molecules. 6. The formic acid monomer. Influence of isotopic substitution , 1988 .

[3]  Manfred Birk,et al.  Rotational Spectra of cis-HCOOH, trans-HCOOH, and trans-H13COOH☆ , 2002 .

[4]  Laurence S. Rothman,et al.  Reprint of: The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition , 1998 .

[5]  T. Johnson,et al.  Gas-Phase Databases for Quantitative Infrared Spectroscopy , 2004, Applied spectroscopy.

[6]  John J. Remedios,et al.  Detection of organic compound signatures in infra-red, limb emission spectra observed by the MIPAS-B2 balloon instrument , 2006 .

[7]  A. Goldman,et al.  Spectral parameters for the ν6 region of HCOOH and its measurement in the infrared tropospheric spectrum , 1999 .

[8]  A. Perrin,et al.  Absolute line intensities for formic acid and dissociation constant of the dimer. , 2007, The Journal of chemical physics.

[9]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[10]  Restelli Giambattista,et al.  Reaction between NO3 and CHO2 in Air. A Determination of the Rate Constant at 295 +- 2K , 1988 .

[11]  D. Hurtmans,et al.  Overtone spectroscopy of formic acid , 2002 .

[12]  S. S. Srivastava,et al.  Atmospheric formic and acetic acids: An overview , 1999 .

[13]  D. Blake,et al.  Enhancement of acidic gases in biomass burning impacted air masses over Canada , 1994 .

[14]  Reinhard Beer,et al.  Airborne Infrared Spectroscopy of 1994 Western Wildfires , 1997 .

[15]  Y. Maréchal IR spectra of carboxylic acids in the gas phase: A quantitative reinvestigation , 1987 .

[16]  J. Notholt,et al.  Absolute infrared band intensities and air broadening coefficient for spectroscopic measurements of formic acid in air , 1991 .

[17]  Frank H. Murcray,et al.  A search for formic acid in the upper troposphere: A tentative identification of the 1105-cm-1 ?6 ba , 1984 .

[18]  W. H. Hocking,et al.  The Other Rotamer of Formic Acid, cis-HCOOH1 , 1976 .

[19]  Shepard A. Clough,et al.  Spectroscopic improvements providing evidence of formic acid in AERI-LBLRTM validation spectra , 2003 .

[20]  Robert A. Toth,et al.  Molecular line parameters for the atmospheric trace molecule spectroscopy experiment. , 1987, Applied optics.

[21]  Y. Miwa,et al.  Extended molecular mechanics calculations of thermodynamic quantities, structures, vibrational frequencies, and infrared absorption intensities of formic acid monomer and dimer , 1991 .

[22]  D. Dangoisse,et al.  Microwave spectra of molecules of astrophysical interest. XVIII. Formic acid , 1980 .

[23]  I. L. Barnes,et al.  Isotopic abundances and atomic weights of the elements , 1984 .

[24]  A Goldman,et al.  1995 Atmospheric Trace Molecule Spectroscopy (ATMOS) linelist. , 1996, Applied optics.

[25]  R. E. Bumgarner,et al.  High-resolution spectroscopy of the ?6 and ?8 bands of formic acid , 1988 .

[26]  J. Hjorth,et al.  Reaction between nitrate radical and formaldehyde in air: a determination of the rate constant at 295 .+-. 2 K , 1988 .

[27]  Laurence S. Rothman,et al.  Total internal partition sums for molecular species in the 2000 edition of the HITRAN database , 2003 .

[28]  J. Demaison,et al.  Spectroscopic Study of the v6=1 and v8=1 Vibrational States of Formic Acid, HCOOH: New Assignments of Laser Transitions , 2002 .

[29]  F. D. Lucia,et al.  Simultaneous analysis of rovibrational and rotational data for the 41, 51, 61, 72, 81, 7191 and 92 states of HCOOH , 2006 .

[30]  D. Griffith,et al.  Emissions from smoldering combustion of biomass measured by open‐path Fourier transform infrared spectroscopy , 1997 .

[31]  A. A. Chursin,et al.  The 1997 spectroscopic GEISA databank , 1999 .

[32]  P. Bernath,et al.  First space‐based observations of formic acid (HCOOH): Atmospheric Chemistry Experiment austral spring 2004 and 2005 Southern Hemisphere tropical‐mid‐latitude upper tropospheric measurements , 2006 .

[33]  J. Galloway,et al.  Considerations regarding sources for formic and acetic acids in the troposphere , 1986 .

[34]  J. Vander Auwera,et al.  High-resolution investigation of the far-infrared spectrum of formic acid , 1992 .

[35]  Franz Schreier,et al.  The 2003 edition of the GEISA/IASI spectroscopic database , 2005 .