A fast-rising tidal disruption event from a candidate intermediate-mass black hole

[1]  A. Drake,et al.  The Final Season Reimagined: 30 Tidal Disruption Events from the ZTF-I Survey , 2022, The Astrophysical Journal.

[2]  M. Nicholl,et al.  Systematic light curve modelling of TDEs: Statistical differences between the spectroscopic classes , 2022, Monthly Notices of the Royal Astronomical Society.

[3]  M. Nicholl,et al.  The bulge masses of TDE host galaxies and their scaling with black hole mass , 2022, Monthly Notices of the Royal Astronomical Society.

[4]  K. Long,et al.  Optical line spectra of tidal disruption events from reprocessing in optically thick outflows , 2022, 2201.01535.

[5]  E. Ramirez-Ruiz,et al.  Evidence for the Preferential Disruption of Moderately Massive Stars by Supermassive Black Holes , 2021, The Astrophysical Journal.

[6]  Jonathan P. Williams,et al.  The Curious Case of ASASSN-20hx: A Slowly Evolving, UV- and X-Ray-Luminous, Ambiguous Nuclear Transient , 2021, The Astrophysical Journal.

[7]  D. Malesani,et al.  A detailed spectroscopic study of Tidal Disruption Events , 2021, 2109.00016.

[8]  L. Dou,et al.  Long-term X-ray evolution of SDSS J134244.4+053056.1. A more than 18 year-old, long-lived IMBH-TDE candidate , 2021, Astronomy & Astrophysics.

[9]  A. Mahabal,et al.  Tidal Disruption Event Hosts Are Green and Centrally Concentrated: Signatures of a Post-merger System , 2021, The Astrophysical Journal.

[10]  P. D. Aleo,et al.  The Young Supernova Experiment: Survey Goals, Overview, and Operations , 2020, The Astrophysical Journal.

[11]  J. Dunlop,et al.  The evolution of the galaxy stellar-mass function over the last 12 billion years from a combination of ground-based and HST surveys , 2020, 2009.03176.

[12]  I. Arcavi,et al.  Optical-Ultraviolet Tidal Disruption Events , 2020, Space Science Reviews.

[13]  V. Baldassare,et al.  Populating the Low-mass End of the MBH– Relation , 2020, The Astrophysical Journal.

[14]  Benjamin D. Johnson,et al.  How Well Can We Measure the Stellar Mass of a Galaxy: The Impact of the Assumed Star Formation History Model in SED Fitting , 2020, The Astrophysical Journal.

[15]  S. Smartt,et al.  An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz , 2020, Monthly Notices of the Royal Astronomical Society.

[16]  A. Horesh,et al.  Radio Properties of Tidal Disruption Events , 2020, Space Science Reviews.

[17]  N. E. Sommer,et al.  The host galaxies of 106 rapidly evolving transients discovered by the Dark Energy Survey , 2020, Monthly Notices of the Royal Astronomical Society.

[18]  Shannon G. Patel,et al.  The Rise and Fall of ASASSN-18pg: Following a TDE from Early to Late Times , 2020, The Astrophysical Journal.

[19]  B. Stalder,et al.  Design and Operation of the ATLAS Transient Science Server , 2020, Publications of the Astronomical Society of the Pacific.

[20]  O. Graur,et al.  The Host Galaxies of Tidal Disruption Events , 2020, Space Science Reviews.

[21]  Ipac,et al.  The Koala: A Fast Blue Optical Transient with Luminous Radio Emission from a Starburst Dwarf Galaxy at z = 0.27 , 2020, The Astrophysical Journal.

[22]  P. Prugniel,et al.  The X-shooter Spectral Library (XSL): Data release 2 , 2020, Astronomy & Astrophysics.

[23]  A. Mahabal,et al.  Seventeen Tidal Disruption Events from the First Half of ZTF Survey Observations: Entering a New Era of Population Studies , 2020, The Astrophysical Journal.

[24]  Steward Observatory,et al.  PypeIt: The Python Spectroscopic Data Reduction Pipeline , 2019, J. Open Source Softw..

[25]  J. Darling,et al.  A New Sample of (Wandering) Massive Black Holes in Dwarf Galaxies from High-resolution Radio Observations , 2019, The Astrophysical Journal.

[26]  J. Speagle dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences , 2019, Monthly Notices of the Royal Astronomical Society.

[27]  P. A. Price,et al.  The Pan-STARRS Data-processing System , 2016, The Astrophysical Journal Supplement Series.

[28]  L. Ho,et al.  Intermediate-Mass Black Holes , 2019, 1911.09678.

[29]  M. Graham,et al.  Discovery of Highly Blueshifted Broad Balmer and Metastable Helium Absorption Lines in a Tidal Disruption Event , 2019, The Astrophysical Journal.

[30]  K. Maguire,et al.  The Spectral Evolution of AT 2018dyb and the Presence of Metal Lines in Tidal Disruption Events , 2019, The Astrophysical Journal.

[31]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Science Objectives , 2019, Publications of the Astronomical Society of the Pacific.

[32]  J. Bloom,et al.  The Broad Absorption Line Tidal Disruption Event iPTF15af: Optical and Ultraviolet Evolution , 2018, The Astrophysical Journal.

[33]  Enrico Ramirez-Ruiz,et al.  Weighing Black Holes Using Tidal Disruption Events , 2018, The Astrophysical Journal.

[34]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: System Overview, Performance, and First Results , 2018, Publications of the Astronomical Society of the Pacific.

[35]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Data Processing, Products, and Archive , 2018, Publications of the Astronomical Society of the Pacific.

[36]  J. Greene,et al.  Identifying AGNs in Low-mass Galaxies via Long-term Optical Variability , 2018, The Astrophysical Journal.

[37]  William H. Lee,et al.  The fast, luminous ultraviolet transient AT2018cow: extreme supernova, or disruption of a star by an intermediate-mass black hole? , 2018, Monthly Notices of the Royal Astronomical Society.

[38]  B. J. Shappee,et al.  The Cow: Discovery of a Luminous, Hot, and Rapidly Evolving Transient , 2018, The Astrophysical Journal.

[39]  J. Strader,et al.  A luminous X-ray outburst from an intermediate-mass black hole in an off-centre star cluster , 2018, Nature Astronomy.

[40]  N. E. Sommer,et al.  Rapidly evolving transients in the Dark Energy Survey , 2018, Monthly Notices of the Royal Astronomical Society.

[41]  E. Ramirez-Ruiz,et al.  A Unified Model for Tidal Disruption Events , 2018, The Astrophysical Journal.

[42]  Gautham Narayan,et al.  MOSFiT: Modular Open Source Fitter for Transients , 2017, 1710.02145.

[43]  Santiago,et al.  Type II Supernova Spectral Diversity. I. Observations, Sample Characterization, and Spectral Line Evolution , 2017, 1709.02487.

[44]  D. Kasen,et al.  What Sets the Line Profiles in Tidal Disruption Events? , 2017, 1707.02993.

[45]  O. Graur,et al.  A Dependence of the Tidal Disruption Event Rate on Global Stellar Surface Mass Density and Stellar Velocity Dispersion , 2017, 1707.02986.

[46]  R. Foley,et al.  Tidal Disruption Event Host Galaxies in the Context of the Local Galaxy Population , 2017, 1707.01559.

[47]  E. Berger,et al.  PS16dtm: A Tidal Disruption Event in a Narrow-line Seyfert 1 Galaxy , 2017, 1703.07816.

[48]  A. Jerkstrand Spectra of supernovae in the nebular phase , 2017, 1702.06702.

[49]  J. Greene,et al.  X-Ray and Ultraviolet Properties of AGNs in Nearby Dwarf Galaxies , 2016, 1609.07148.

[50]  M. Cappellari Improving the full spectrum fitting method: accurate convolution with Gauss-Hermite functions , 2016, 1607.08538.

[51]  J. Guillochon,et al.  New Physical Insights about Tidal Disruption Events from a Comprehensive Observational Inventory at X-Ray Wavelengths , 2016, 1611.02291.

[52]  B. Winkel,et al.  HI4PI: a full-sky H i survey based on EBHIS and GASS , 2016, 1610.06175.

[53]  Benjamin D. Johnson,et al.  Deriving Physical Properties from Broadband Photometry with Prospector: Description of the Model and a Demonstration of its Accuracy Using 129 Galaxies in the Local Universe , 2016, 1609.09073.

[54]  A. Comastri,et al.  Observational Signatures of High-Redshift Quasars and Local Relics of Black Hole Seeds , 2016, Publications of the Astronomical Society of Australia.

[55]  Leslie Greengard,et al.  Fast Direct Methods for Gaussian Processes , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  M. Sullivan,et al.  FLASH SPECTROSCOPY: EMISSION LINES FROM THE IONIZED CIRCUMSTELLAR MATERIAL AROUND <10-DAY-OLD TYPE II SUPERNOVAE , 2015, 1512.00846.

[57]  M. Volonteri,et al.  RELATIONS BETWEEN CENTRAL BLACK HOLE MASS AND TOTAL GALAXY STELLAR MASS IN THE LOCAL UNIVERSE , 2015, 1508.06274.

[58]  J. Greene,et al.  A ∼50,000 M⊙ SOLAR MASS BLACK HOLE IN THE NUCLEUS OF RGG 118 , 2015, 1506.07531.

[59]  M. Giersz,et al.  MOCCA code for star cluster simulations – IV. A new scenario for intermediate mass black hole formation in globular clusters , 2015, 1506.05234.

[60]  G. Pignata,et al.  The rise-time of Type II supernovae , 2015, 1505.02988.

[61]  James Guillochon,et al.  A DARK YEAR FOR TIDAL DISRUPTION EVENTS , 2015, 1501.05306.

[62]  T. Treu,et al.  X-RAY CONSTRAINTS ON THE LOCAL SUPERMASSIVE BLACK HOLE OCCUPATION FRACTION , 2014, 1403.4246.

[63]  J. Guillochon,et al.  A LUMINOUS, FAST RISING UV-TRANSIENT DISCOVERED BY ROTSE: A TIDAL DISRUPTION EVENT? , 2014, 1410.6014.

[64]  S. Gezari,et al.  RAPIDLY EVOLVING AND LUMINOUS TRANSIENTS FROM PAN-STARRS1 , 2014, 1405.3668.

[65]  P. McCarthy,et al.  Hα SPECTRAL DIVERSITY OF TYPE II SUPERNOVAE: CORRELATIONS WITH PHOTOMETRIC PROPERTIES , 2014, 1403.7089.

[66]  P. McCarthy,et al.  Analysis of blueshifted emission peaks in Type II supernovae , 2014, 1404.0581.

[67]  Nathaniel R. Butler,et al.  A TIDAL DISRUPTION EVENT IN A NEARBY GALAXY HOSTING AN INTERMEDIATE MASS BLACK HOLE , 2013, 1311.6162.

[68]  J. Guillochon,et al.  PS1-10jh: THE DISRUPTION OF A MAIN-SEQUENCE STAR OF NEAR-SOLAR COMPOSITION , 2013, 1304.6397.

[69]  S. Gezari Tidal Disruption Events , 2013, Brazilian Journal of Physics.

[70]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.

[71]  Enrico Ramirez-Ruiz,et al.  HYDRODYNAMICAL SIMULATIONS TO DETERMINE THE FEEDING RATE OF BLACK HOLES BY THE TIDAL DISRUPTION OF STARS: THE IMPORTANCE OF THE IMPACT PARAMETER AND STELLAR STRUCTURE , 2012, 1206.2350.

[72]  A. Gal-yam,et al.  WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.

[73]  Aniruddha R. Thakar,et al.  ERRATUM: “THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III” (2011, ApJS, 193, 29) , 2011 .

[74]  Nathaniel R. Butler,et al.  OPTIMAL TIME-SERIES SELECTION OF QUASARS , 2010, 1008.3143.

[75]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[76]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[77]  B. Willman,et al.  THE LEAST-LUMINOUS GALAXY: SPECTROSCOPY OF THE MILKY WAY SATELLITE SEGUE 1 , 2008, 0809.2781.

[78]  M. Sullivan,et al.  K-Corrections and Spectral Templates of Type Ia Supernovae , 2007, astro-ph/0703529.

[79]  Astronomy,et al.  The mass function of high-redshift seed black holes , 2007, astro-ph/0702340.

[80]  L. Kewley,et al.  The host galaxies and classification of active galactic nuclei , 2006, astro-ph/0605681.

[81]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[82]  J. Prieto,et al.  Testing LMC Microlensing Scenarios: The Discrimination Power of the SuperMACHO Microlensing Survey , 2005, astro-ph/0509240.

[83]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[84]  Eric Emsellem,et al.  Parametric Recovery of Line‐of‐Sight Velocity Distributions from Absorption‐Line Spectra of Galaxies via Penalized Likelihood , 2003, astro-ph/0312201.

[85]  Robert Jedicke,et al.  Pan-STARRS: A Large Synoptic Survey Telescope Array , 2002, SPIE Astronomical Telescopes + Instrumentation.

[86]  K. Omukai,et al.  First Stars, Very Massive Black Holes, and Metals , 2001, astro-ph/0111341.

[87]  D. Merritt,et al.  Black Hole Demographics from the M(BH)-sigma Relation , 2000, astro-ph/0009076.

[88]  S. Tremaine,et al.  The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.

[89]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[90]  A. Loeb,et al.  Collapse of primordial gas clouds and the formation of quasar black holes , 1994, astro-ph/9401026.

[91]  M. Turatto,et al.  Light curves of type II supernovae. II: The analysis , 1994 .

[92]  Alexei V. Filippenko,et al.  Discovery of an extremely low luminosity Seyfert 1 nucleus in the dwarf galaxy NGC 4395 , 1989 .

[93]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[94]  W. Sargent,et al.  A Dwarf Galaxy with Seyfert Characteristics , 1987 .

[95]  J. Baldwin,et al.  CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS. , 1981 .

[96]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[97]  I. S. Bowen THE EXCITATION OF THE PERMITTED O III NEBULAR LINES , 1934 .