Airborne Electromagnetic, Magnetic, and Radiometric Surveys at the German North Sea Coast Applied to Groundwater and Soil Investigations

[1]  M. Afanasjew,et al.  A cut-&-paste strategy for the 3-D inversion of helicopter-borne electromagnetic data — II. Combining regional 1-D and local 3-D inversion , 2016 .

[2]  B. Siemon Improved and new resistivity-depth profiles for helicopter electromagnetic data , 2001 .

[3]  David Beamish,et al.  Peat Mapping Associations of Airborne Radiometric Survey Data , 2014, Remote. Sens..

[4]  D. Logashenko,et al.  Modeling saltwater intrusion scenarios for a coastal aquifer at the German North Sea , 2018 .

[5]  Ian Briggs Machine contouring using minimum curvature , 1974 .

[6]  C. Krawczyk,et al.  Anomalies of the Earth's total magnetic field in Germany – the first complete homogenous data set reveals new opportunities for multiscale geoscientific studies , 2011 .

[7]  Bernhard Siemon,et al.  Airborne Electromagnetic and Radiometric Peat Thickness Mapping of a Bog in Northwest Germany (Ahlen-Falkenberger Moor) , 2020, Remote. Sens..

[8]  K. Meyer,et al.  Stratigraphische Begriffe für das Quartär des norddeutschen Vereisungsgebietes , 2007 .

[9]  B. Siemon,et al.  Comparison of manually and automatically derived fresh-saline groundwater boundaries from helicopter-borne EM data at the Jade Bay, Northern Germany , 2018 .

[10]  C. Simmons,et al.  Impact of Sea‐Level Rise on Sea Water Intrusion in Coastal Aquifers , 2009, Ground water.

[11]  B. Minsley A trans-dimensional Bayesian Markov chain Monte Carlo algorithm for model assessment using frequency-domain electromagnetic data , 2011 .

[12]  M. Frechen,et al.  Evidence of isochronic transgressive surfaces within the Jade Bay tidal flat area, southern German North Sea coast - Holocene event horizons of regional interest , 2013 .

[13]  M. Karaoulis,et al.  Large-scale, probabilistic salinity mapping using airborne electromagnetics for groundwater management in Zeeland, the Netherlands , 2018, Environmental Research Letters.

[14]  Jennifer Klimke,et al.  Three-dimensional mapping of Quaternary sediments improved by airborne electromagnetics in the case of the Quakenbrück Basin, Northern Germany[Verfeinerung der dreidimensionalen Kartierung quartärer Sedimente im Quakenbrücker Becken, Norddeutschland, mit Hilfe aeroelektromagnetischer Messungen] , 2013 .

[15]  Keith Smettem,et al.  Relationships Between Soil Properties and High-Resolution Radiometrics, Central Eastern Wheatbelt, Western Australia , 2002 .

[16]  T. Günther,et al.  Numerical modelling of climate change impacts on freshwater lenses on the North Sea Island of Borkum using hydrological and geophysical methods , 2012 .

[17]  Advanced inversion methods for airborne electromagnetic exploration , 2000 .

[18]  H. Streif Sedimentary record of Pleistocene and Holocene marine inundations along the North Sea coast of Lower Saxony, Germany , 2004 .

[19]  J. L. Gunnink,et al.  Applying airborne electromagnetics in 3D stochastic geohydrological modelling for determining groundwater protection , 2015 .

[20]  K. Sengpiel,et al.  APPROXIMATE INVERSION OF AIRBORNE EM DATA FROM A MULTILAYERED GROUND1 , 1988 .

[21]  M. Afanasjew,et al.  A cut-&-paste strategy for the 3-D inversion of helicopter-borne electromagnetic data — I. 3-D inversion using the explicit Jacobian and a tensor-based formulation , 2016 .

[22]  G. Houben Annotated translation of “Die Wasserversorgung einiger Nordseebäder [The water supply of some North Sea spas]” by Alexander Herzberg (1901) , 2018, Hydrogeology Journal.

[23]  Towards an Integrative Inversion and Interpretation of Airborne and Terrestrial Data , 2014 .

[24]  A. K. Lysdahl,et al.  Peatland Volume Mapping Over Resistive Substrates With Airborne Electromagnetic Technology , 2019, Geophysical Research Letters.

[25]  M. Rahman,et al.  Characterization of a regional coastal zone aquifer using an interdisciplinary approach - an example from Weser-Elbe region, Lower Saxony, Germany , 2018 .

[26]  J. Rønning,et al.  Airborne Geophysical Surveys and Their Integrated Interpretation , 2020 .

[27]  R. Langel International Geomagnetic Reference Field, 1991 revision , 1991 .

[28]  A. Ullmann,et al.  Towards an improved geological interpretation of airborne electromagnetic data: a case study from the Cuxhaven tunnel valley and its Neogene host sediments (northwest Germany) , 2014, Netherlands Journal of Geosciences - Geologie en Mijnbouw.

[29]  Application of frequency-domain helicopter-borne electromagnetics for groundwater exploration in urban areas , 2011 .

[30]  S. Maus,et al.  Variogram analysis of helicopter magnetic data to identify paleochannels of the Omaruru River, Namibia , 1999 .

[31]  Investigation of Hazardous Waste Sites and their Environment Using the BGR Helicopter-Borne Geophysical System , 2002 .

[32]  G. O. Essink,et al.  Shallow rainwater lenses in deltaic areas with saline seepage , 2011 .

[33]  D. Beamish Gamma ray attenuation in the soils of Northern Ireland, with special reference to peat. , 2013, Journal of environmental radioactivity.

[34]  B. Siemon,et al.  The benefit of geophysical data for hydrogeological 3D modelling – an example using the Cuxhaven buried valley , 2009 .

[35]  M. Bierkens,et al.  Quantifying Geophysical Inversion Uncertainty Using Airborne Frequency Domain Electromagnetic Data—Applied at the Province of Zeeland, the Netherlands , 2018, Water Resources Research.

[36]  A. Christiansen,et al.  A review of helicopter‐borne electromagnetic methods for groundwater exploration , 2009 .

[37]  V. Post Annotated translation of “Nota in verband met de voorgenomen putboring nabij Amsterdam [Note concerning the intended well drilling near Amsterdam]” by J. Drabbe and W. Badon Ghijben (1889) , 2018, Hydrogeology Journal.

[38]  M. I. Seht,et al.  Combination of Airborne Geophysical Surveys at the Estuaries of the Weser and Elbe Rivers in Northern Germany , 2012 .

[39]  E. Auken,et al.  Combining ground-based and airborne EM through Artificial Neural Networks for modelling glacial till under saline groundwater conditions , 2012 .

[40]  B. Siemon,et al.  Identification of buried valleys using the BGR helicopter‐borne geophysical system , 2006 .

[41]  B. Siemon,et al.  Geophysical investigation of buried Pleistocene subglacial valleys in Northern Germany , 2003 .

[42]  Esben Auken,et al.  Laterally constrained inversion of helicopter-borne frequency-domain electromagnetic data , 2009 .

[43]  Levelling of helicopter-borne frequency-domain electromagnetic data , 2009 .

[44]  H. Blume,et al.  Watten und Strände – Salzwiesen und Mangrovenwälder , 2016 .

[45]  D. Beamish Enhancing the resolution of airborne gamma-ray data using horizontal gradients , 2016 .

[46]  T. Günther,et al.  Airborne and ground geophysical mapping of coastal clays in Eastern Friesland, Germany , 2015 .

[47]  C. Swain,et al.  A FORTRAN IV program for interpolating irregularly spaced data using the difference equations for minimum curvature , 1976 .

[48]  N. Shackleton Oxygen isotopes, ice volume and sea level , 1987 .

[49]  David L.B. Jupp,et al.  Stable Iterative Methods for the Inversion of Geophysical Data , 2007 .

[50]  V. Baranov A NEW METHOD FOR INTERPRETATION OF AEROMAGNETIC MAPS: PSEUDO‐GRAVIMETRIC ANOMALIES , 1957 .