Use of highly alkaline conditions to improve cost-effectiveness of algal biotechnology

[1]  Liandong Zhu Microalgal culture strategies for biofuel production: a review , 2015 .

[2]  Sandhya Mishra,et al.  Bicarbonate supplementation enhanced biofuel production potential as well as nutritional stress mitigation in the microalgae Scenedesmus sp. CCNM 1077. , 2015, Bioresource technology.

[3]  Marc Strous,et al.  Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome, and metatranscriptome , 2015, Front. Microbiol..

[4]  Asher Kiperstok,et al.  Energy production from microalgae biomass: carbon footprint and energy balance , 2015 .

[5]  R. Handler,et al.  Implications of widespread algal biofuels production on macronutrient fertilizer supplies: Nutrient demand and evaluation of potential alternate nutrient sources , 2015 .

[6]  C. Ludwig,et al.  First developments towards closing the nutrient cycle in a biofuel production process , 2015 .

[7]  B. Peyton,et al.  Dissolved inorganic carbon enhanced growth, nutrient uptake, and lipid accumulation in wastewater grown microalgal biofilms. , 2015, Bioresource technology.

[8]  M. Sheehan,et al.  Microalgal biofilms for biomass production , 2014, Journal of Applied Phycology.

[9]  Annika Weiss,et al.  Life cycle costs for the optimized production of hydrogen and biogas from microalgae. , 2014 .

[10]  R. Wijffels,et al.  Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor , 2014, Biotechnology and bioengineering.

[11]  R. Sims,et al.  Algal biofilm based technology for wastewater treatment , 2014 .

[12]  Adam M Hise,et al.  Sources and resources: importance of nutrients, resource allocation, and ecology in microalgal cultivation for lipid accumulation , 2014, Applied Microbiology and Biotechnology.

[13]  Hans C. Bernstein,et al.  Direct measurement and characterization of active photosynthesis zones inside wastewater remediating and biofuel producing microalgal biofilms. , 2014, Bioresource technology.

[14]  J. Doucha,et al.  High Density Outdoor Microalgal Culture , 2014 .

[15]  M. Borowitzka,et al.  Comparison of growth of Tetraselmis in a tubular photobioreactor (Biocoil) and a raceway pond , 2014, Journal of Applied Phycology.

[16]  Zhiyou Wen,et al.  Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest. , 2013, Bioresource technology.

[17]  R. Wijffels,et al.  Biomass and lipid productivity of Neochloris oleoabundans under alkaline–saline conditions , 2013 .

[18]  D. G. Allen,et al.  Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation. , 2013, Bioresource technology.

[19]  Yuxiao Xie,et al.  Bicarbonate-based Integrated Carbon Capture and Algae Production System with alkalihalophilic cyanobacterium. , 2013, Bioresource technology.

[20]  H. Chanakya,et al.  Treatment efficacy of algae-based sewage treatment plants , 2013, Environmental Monitoring and Assessment.

[21]  Yuxiao Xie,et al.  Selection of Microalgae and Cyanobacteria Strains for Bicarbonate-Based Integrated Carbon Capture and Algae Production System , 2013, Applied Biochemistry and Biotechnology.

[22]  Hui Wang,et al.  Attached cultivation technology of microalgae for efficient biomass feedstock production. , 2013, Bioresource technology.

[23]  Jinyue Yan,et al.  Microalgal biomethane production integrated with an existing biogas plant: A case study in Sweden , 2013 .

[24]  Sohail T. Ali,et al.  The effect of sodium bicarbonate supplementation on growth and biochemical composition of marine microalgae cultures , 2012, Journal of Applied Phycology.

[25]  F. G. Acién,et al.  Production cost of a real microalgae production plant and strategies to reduce it. , 2012, Biotechnology advances.

[26]  M. Strous,et al.  Activity and diversity of haloalkaliphilic methanogens in Central Asian soda lakes. , 2012, Journal of biotechnology.

[27]  C. Picard,et al.  Mass transfer in a membrane aerated biofilm. , 2012, Water research.

[28]  R. Sims,et al.  Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by‐products , 2012, Biotechnology and bioengineering.

[29]  Kimberly L. Ogden,et al.  A Comparison of Nannochloropsis salina Growth Performance in Two Outdoor Pond Designs: Conventional Raceways versus the ARID Pond with Superior Temperature Management , 2012 .

[30]  Halil Berberoglu,et al.  Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. , 2012, Bioresource technology.

[31]  Joe L. Outlaw,et al.  Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest , 2012 .

[32]  F Delrue,et al.  An economic, sustainability, and energetic model of biodiesel production from microalgae. , 2012, Bioresource technology.

[33]  Y. Shiraiwa,et al.  High-CO2 Response Mechanisms in Microalgae , 2012 .

[34]  F. Behrendt,et al.  Biomass productivity and productivity of fatty acids and amino acids of microalgae strains as key characteristics of suitability for biodiesel production , 2012, Journal of Applied Phycology.

[35]  M. Klotz,et al.  The Microbial Sulfur Cycle , 2011, Front. Microbio..

[36]  Ryan Davis,et al.  Techno-economic analysis of autotrophic microalgae for fuel production , 2011 .

[37]  Raymond R. Tan,et al.  Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis , 2011 .

[38]  D. G. Allen,et al.  Species and material considerations in the formation and development of microalgal biofilms , 2011, Applied Microbiology and Biotechnology.

[39]  J. G. Kuenen,et al.  The Microbial Sulfur Cycle at Extremely Haloalkaline Conditions of Soda Lakes , 2011, Front. Microbio..

[40]  L. Lardon,et al.  Life-cycle assessment of microalgae culture coupled to biogas production. , 2011, Bioresource technology.

[41]  Maria J Barbosa,et al.  Microalgal production--a close look at the economics. , 2011, Biotechnology advances.

[42]  Willy Verstraete,et al.  The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. , 2011, Bioresource technology.

[43]  M. Zaidlewicz,et al.  Reduction in Water , 2011 .

[44]  J. Murphy,et al.  Mechanism and challenges in commercialisation of algal biofuels. , 2011, Bioresource technology.

[45]  Yingkuan Wang,et al.  Cultivation of Green Algae Chlorella sp. in Different Wastewaters from Municipal Wastewater Treatment Plant , 2010, Applied biochemistry and biotechnology.

[46]  A. Kiperstok,et al.  Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. , 2010, Bioresource technology.

[47]  Chunzhao Liu,et al.  Microalgal bioreactors: Challenges and opportunities , 2009 .

[48]  Zhiyou Wen,et al.  Development of an attached microalgal growth system for biofuel production , 2009, Applied Microbiology and Biotechnology.

[49]  V. N. Akimov,et al.  Ecophysiology and polymorphism of the unicellular extremely natronophilic cyanobacterium Euhalothece sp. Z-M001 from Lake Magadi , 2008, Microbiology.

[50]  P. Albertano,et al.  Cultured phototrophic biofilms for phosphorus removal in wastewater treatment. , 2008, Water research.

[51]  G. Zavarzin,et al.  Transport systems for carbonate in the extremely natronophilic cyanobacterium Euhalothece sp. , 2008, Microbiology.

[52]  M. Schagerl,et al.  Phytoplankton community relationship to environmental variables in three Kenyan Rift Valley saline-alkaline lakes , 2008 .

[53]  D. Los,et al.  Extracellular carbonic anhydrases of the stromatolite-forming cyanobacterium Microcoleus chthonoplastes. , 2007, Microbiology.

[54]  J. Seckbach Algae and Cyanobacteria in Extreme Environments , 2007 .

[55]  Juergen Wiegel,et al.  Novel and Unexpected Prokaryotic Diversity in Water and Sediments of the Alkaline, Hypersaline Lakes of the Wadi An Natrun, Egypt , 2007, Microbial Ecology.

[56]  J. Wiegel,et al.  Novel and Unexpected Prokaryotic Diversity in Water and Sediments of the Alkaline, Hypersaline Lakes of the Wadi An Natrun, Egypt , 2007, Microbial Ecology.

[57]  Joel L. Cuello,et al.  Feasibility assessment of microalgal carbon dioxide sequestration technology with photobioreactor and solar collector , 2006 .

[58]  J. Doucha,et al.  Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate , 2006, Journal of Applied Phycology.

[59]  A. Carvalho,et al.  Microalgal Reactors: A Review of Enclosed System Designs and Performances , 2006, Biotechnology progress.

[60]  J. G. Kuenen,et al.  Chemolithotrophic haloalkaliphiles from soda lakes. , 2005, FEMS microbiology ecology.

[61]  L. Krienitz,et al.  Cyanobacteria and cyanobacterial toxins in the alkaline crater lakes Sonachi and Simbi, Kenya , 2005 .

[62]  L. Krienitz,et al.  Cyanobacteria and cyanobacterial toxins in three alkaline Rift Valley lakes of Kenya—Lakes Bogoria, Nakuru and Elmenteita , 2004 .

[63]  G. Zavarzin,et al.  Carbonic Anhydrase of the Alkaliphilic Cyanobacterium Microcoleus chthonoplastes , 2004, Microbiology.

[64]  G. Zavarzin,et al.  Carbonic Anhydrase Activity of Alkalophilic Cyanobacteria from Soda Lakes , 2003, Russian Journal of Plant Physiology.

[65]  J. Doucha,et al.  CO2 and O2 gas exchange in outdoor thin-layer high density microalgal cultures , 1996, Journal of Applied Phycology.

[66]  K. Fujiwara,et al.  New method for measurement of interdiffusion coefficient in high temperature solutions based on Fick's first law , 2002 .

[67]  A. Richmond,et al.  An industrial-size flat plate glass reactor for mass production of Nannochloropsis sp. (Eustigmatophyceae) , 2001 .

[68]  Y. Chisti,et al.  Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance , 2001 .

[69]  J. Wimpenny,et al.  Heterogeneity in biofilms. , 2000, FEMS microbiology reviews.

[70]  T. Zhilina,et al.  The alkaliphilic microbial community and its functional diversity , 1999 .

[71]  H. Atsushi,et al.  CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation , 1997 .

[72]  John R. Benemann,et al.  CO2 mitigation with microalgae systems , 1997 .

[73]  Joseph R. V. Flora,et al.  Modeling algal biofilms: Role of carbon, light, cell surface charge, and ionic species , 1995 .

[74]  A. Stams,et al.  ANAEROBIC DIGESTION , 2004 .

[75]  A. Incharoensakdi,et al.  CO(2) Fixation Rate and RuBisCO Content Increase in the Halotolerant Cyanobacterium, Aphanothece halophytica, Grown in High Salinities. , 1988, Plant physiology.

[76]  J. Melack Photosynthetic activity of phytoplankton in tropical African soda lakes , 1981 .

[77]  John M. Melack,et al.  Photosynthetic rates of phytoplankton in East African alkaline, saline lakes1 , 1974 .

[78]  Agnieszka Bekisz,et al.  Transport systems. , 1970, Nature.