Laplacian spectra of a class of small-world networks and their applications

One of the most crucial domains of interdisciplinary research is the relationship between the dynamics and structural characteristics. In this paper, we introduce a family of small-world networks, parameterized through a variable d controlling the scale of graph completeness or of network clustering. We study the Laplacian eigenvalues of these networks, which are determined through analytic recursive equations. This allows us to analyze the spectra in depth and to determine the corresponding spectral dimension. Based on these results, we consider the networks in the framework of generalized Gaussian structures, whose physical behavior is exemplified on the relaxation dynamics and on the fluorescence depolarization under quasiresonant energy transfer. Although the networks have the same number of nodes (beads) and edges (springs) as the dual Sierpinski gaskets, they display rather different dynamic behavior.

[1]  Hubertus Th. Jongen,et al.  Optimization theory , 2004 .

[2]  Beom Jun Kim,et al.  Continuity of the explosive percolation transition. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Jerry P. Gollub,et al.  Advanced Physics in the High Schools , 2002 .

[4]  George R. Newkome,et al.  From 1 3 Dendritic Designs to Fractal Supramacromolecular Constructs: Understanding the Pathway to the Sierpinski gasket , 2015 .

[5]  Kapral,et al.  Coupled maps on fractal lattices. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[6]  Umberto Marconi,et al.  Time dependent Ginzburg - Landau model in the absence of translational invariance. Non-conserved order parameter domain growth , 1997 .

[7]  Alexander Blumen,et al.  Polymer dynamics and topology: extension of stars and dendrimers in external fields , 2000 .

[8]  I. M. Sokolov,et al.  Small-world Rouse networks as models of cross-linked polymers , 2000, cond-mat/0004392.

[9]  R Dobrin,et al.  Minimum spanning trees on random networks. , 2001, Physical review letters.

[10]  A. A. Gurtovenko,et al.  Generalized Gaussian Structures: Models for Polymer Systems with ComplexTopologies , 2005 .

[11]  F. Y. Wu Theory of resistor networks: the two-point resistance , 2004 .

[12]  Chengzhen Cai,et al.  Rouse Dynamics of a Dendrimer Model in the ϑ Condition , 1997 .

[13]  Frank Stajano,et al.  Eight friends are enough: social graph approximation via public listings , 2009, SNS '09.

[14]  Mark Hillery,et al.  Searching via walking: How to find a marked clique of a complete graph using quantum walks , 2010 .

[15]  Alexander Blumen,et al.  On the statistics of generalized Gaussian structures: collapse and random external fields , 1995 .

[16]  Marián Boguñá,et al.  The Structure and Dynamics of Networks , 2007 .

[17]  Zhongzhi Zhang,et al.  Random walks on dual Sierpinski gaskets , 2011 .

[18]  O. Bénichou,et al.  From first-passage times of random walks in confinement to geometry-controlled kinetics , 2014 .

[19]  Alexander Blumen,et al.  Generalized Vicsek Fractals: Regular Hyperbranched Polymers , 2004 .

[20]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[21]  H E Stanley,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Anastasiia Anishchenko,et al.  Enhancing the spreading of quantum walks on star graphs by additional bonds , 2011, Quantum Inf. Process..

[23]  O Bénichou,et al.  Non-Markovian polymer reaction kinetics. , 2012, Nature chemistry.

[24]  Wu,et al.  Dynamics of a Vicsek fractal: The boundary effect and the interplay among the local symmetry, the self-similarity, and the structure of the fractal. , 1994, Physical review. B, Condensed matter.

[25]  Shuigeng Zhou,et al.  Determining global mean-first-passage time of random walks on Vicsek fractals using eigenvalues of Laplacian matrices. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Wu,et al.  Real space Green's function approach to vibrational dynamics of a Vicsek fractal. , 1992, Physical review letters.

[27]  Alexander Blumen,et al.  Monitoring energy transfer in hyperbranched macromolecules through fluorescence depolarization , 2005 .

[28]  Sokolov,et al.  Relaxation properties of small-world networks , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  H. Stanley,et al.  Statistical physics of macromolecules , 1995 .

[30]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[31]  P. E. Rouse A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers , 1953 .

[32]  M. Newman,et al.  Finding community structure in networks using the eigenvectors of matrices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Alexander Blumen,et al.  Energy transfer and trapping in regular hyperbranched macromolecules , 2005 .

[34]  Maggs,et al.  Subdiffusion and Anomalous Local Viscoelasticity in Actin Networks. , 1996, Physical review letters.

[35]  Alexander Blumen,et al.  Spectra of Husimi cacti: exact results and applications. , 2007, The Journal of chemical physics.

[36]  Zhongzhi Zhang,et al.  Random walks in small-world exponential treelike networks , 2011, 1107.4662.

[37]  M. Huggins Viscoelastic Properties of Polymers. , 1961 .

[38]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[39]  Alexander Blumen,et al.  Strange kinetics of polymeric networks modelled by finite fractals , 2002 .

[40]  S. Alexander,et al.  Density of states on fractals : « fractons » , 1982 .

[41]  F. Verstraete,et al.  Complete-graph tensor network states: a new fermionic wave function ansatz for molecules , 2010, 1004.5303.

[42]  Alexander Blumen,et al.  Multifractal spectra and the relaxation of model polymer networks , 2002 .

[43]  A. Blumen,et al.  Relaxation of disordered polymer networks: Regular lattice made up of small-world Rouse networks , 2001 .

[44]  Helmut Schiessel,et al.  Unfold dynamics of generalized Gaussian structures , 1998 .