Supramolecular gel chemistry: developments over the last decade.

This highlight gives a brief flavour of the development of gels derived from low molecular weight gelators broadly in the first decade of the 2000's. A particular theme is the emergence of switchable gels and increasing hi-tech niche application areas. Control and exploitation of supramolecular gels forms a huge part of the grand challenge of directed assembly of extended structures with targeted properties.

[1]  J. Steed,et al.  Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth , 2010, Nature Chemistry.

[2]  J. Steed,et al.  Exploiting cavities in supramolecular gels. , 2010, Angewandte Chemie.

[3]  Mischa Zelzer,et al.  Next-generation peptide nanomaterials: molecular networks, interfaces and supramolecular functionality. , 2010, Chemical Society reviews.

[4]  R. Das,et al.  Spectroscopic, microscopic and first rheological investigations in charge-transfer interaction induced organogels , 2010 .

[5]  C. Rao,et al.  Carbon nanotube reinforced supramolecular gels with electrically conducting, viscoelastic and near-infrared sensitive properties , 2010 .

[6]  J. Steed,et al.  Shear induced gelation in a copper(II) metallogel: new aspects of ion-tunable rheology and gel-reformation by external chemical stimuli , 2010 .

[7]  B. Escuder,et al.  Supramolecular gels as active media for organic reactions and catalysis , 2010 .

[8]  J. Boekhoven,et al.  Size control and compartmentalization in self-assembled nano-structures of a multisegment amphiphile. , 2010, Chemical communications.

[9]  B. Escuder,et al.  HRMAS 1H NMR as a tool for the study of supramolecular gels , 2010 .

[10]  D. Thompson,et al.  pH and cation-responsive supramolecular gels formed by cyclodextrin amines in DMSO. , 2010, Soft matter.

[11]  Jonathan W Steed,et al.  Metal- and anion-binding supramolecular gels. , 2010, Chemical reviews.

[12]  S. Stupp,et al.  Tunable mechanics of peptide nanofiber gels. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[13]  Jiaxi Cui,et al.  Tuning the helicity of self-assembled structure of a sugar-based organogelator by the proper choice of cooling rate. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[14]  K. Hanabusa,et al.  Polymer organogelators that make supramolecular organogels through physical cross-linking and self-assembly. , 2010, Chemical Society reviews.

[15]  R. Das,et al.  Supramolecular gels ‘in action’ , 2009 .

[16]  G. Cravotto,et al.  Molecular self-assembly and patterning induced by sound waves. The case of gelation. , 2009, Chemical Society reviews.

[17]  Jonathan W Steed,et al.  Anion-tuning of supramolecular gel properties , 2009, Nature Chemistry.

[18]  I. Coates,et al.  Controlled self-assembly-synthetic tunability and covalent capture of nanoscale gel morphologies. , 2009, Chemistry.

[19]  Jamie R Moffat,et al.  Metathesis within self-assembled gels: transcribing nanostructured soft materials into a more robust form. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[20]  A. Gasnier,et al.  Metallo-supramolecular gels based on a multitopic cyclam bis-terpyridine platform. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[21]  Bing Xu,et al.  Molecular hydrogels of therapeutic agents. , 2009, Chemical Society reviews.

[22]  H. Maeda Anion-responsive supramolecular gels. , 2008, Chemistry.

[23]  P. Dastidar,et al.  Supramolecular gelling agents: can they be designed? , 2008, Chemical Society reviews.

[24]  Zhen Tong,et al.  Redox-responsive gel-sol/sol-gel transition in poly(acrylic acid) aqueous solution containing Fe(III) ions switched by light. , 2008, Journal of the American Chemical Society.

[25]  David K Smith,et al.  High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. , 2008, Angewandte Chemie.

[26]  I. Hamley,et al.  Low-molecular-weight gelators: elucidating the principles of gelation based on gelator solubility and a cooperative self-assembly model. , 2008, Journal of the American Chemical Society.

[27]  Andrew M. Smith,et al.  Designing peptide based nanomaterials. , 2008, Chemical Society reviews.

[28]  J. Steed,et al.  Structure calculation of an elastic hydrogel from sonication of rigid small molecule components. , 2008, Angewandte Chemie.

[29]  Bing Xu,et al.  Enzymatic hydrogelation of small molecules. , 2008, Accounts of chemical research.

[30]  C. Sanchez,et al.  Inorganic and Hybrid Nanofibrous Materials Templated with Organogelators , 2008 .

[31]  Bing Xu,et al.  Intracellular hydrogelation of small molecules inhibits bacterial growth. , 2007, Angewandte Chemie.

[32]  S. Rowan,et al.  Structural origin of the thixotropic behavior of a class of metallosupramolecular gels , 2007 .

[33]  P. Dastidar,et al.  Composites of N,N′-bis-(pyridyl) urea-dicarboxylic acid as new hydrogelators—a crystal engineering approach , 2007 .

[34]  M. Schmutz,et al.  Formation of helical mesopores in organic polymer matrices. , 2007, Journal of the American Chemical Society.

[35]  David K. Smith,et al.  Dendritic supermolecules--towards controllable nanomaterials. , 2006, Chemical communications.

[36]  B. Escuder,et al.  Insight on the NMR study of supramolecular gels and its application to monitor molecular recognition on self-assembled fibers. , 2006, The Journal of organic chemistry.

[37]  C. J. Donahue Lubricating grease : A chemical primer , 2006 .

[38]  P. Vemula,et al.  Smart amphiphiles: hydro/organogelators for in situ reduction of gold. , 2006, Chemical communications.

[39]  S. Shinkai,et al.  Axial coordination changes the morphology of porphyrin assemblies in an organogel system. , 2006, Organic & biomolecular chemistry.

[40]  H. Tian,et al.  A multiple switching bisthienylethene and its photochromic fluorescent organogelator. , 2006, Chemical communications.

[41]  F. Fages Metal coordination to assist molecular gelation. , 2006, Angewandte Chemie.

[42]  Neralagatta M Sangeetha,et al.  Supramolecular gels: functions and uses. , 2005, Chemical Society reviews.

[43]  Andrew R. Hirst,et al.  Two-component gel-phase materials--highly tunable self-assembling systems. , 2005, Chemistry.

[44]  T. Naota,et al.  Molecules that assemble by sound: an application to the instant gelation of stable organic fluids. , 2005, Journal of the American Chemical Society.

[45]  V. John,et al.  Urea and thiourea derivatives as low molecular-mass organogelators. , 2005, Chemistry.

[46]  K. Wilson,et al.  Synthesis of gold nanoparticles within a supramolecular gel-phase network. , 2005, Chemical communications.

[47]  S. James,et al.  A metal-organic gel used as a template for a porous organic polymer. , 2005, Chemical communications.

[48]  S. Weiner,et al.  An organic hydrogel as a matrix for the growth of calcite crystals. , 2004, Organic & biomolecular chemistry.

[49]  Andrew R. Hirst,et al.  Solvent effects on supramolecular gel-phase materials: two-component dendritic gel. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[50]  S. Zakeeruddin,et al.  Quasi-solid-state dye sensitized solar cells with 1,3:2,4-di-O-benzylidene-D-sorbitol derivatives as low molecular weight organic gelators , 2004 .

[51]  A. Hamilton,et al.  Water gelation by small organic molecules. , 2004, Chemical reviews.

[52]  S. Rowan,et al.  Multistimuli, multiresponsive metallo-supramolecular polymers. , 2003, Journal of the American Chemical Society.

[53]  K. V. van Bommel,et al.  Organic templates for the generation of inorganic materials. , 2003, Angewandte Chemie.

[54]  B. Feringa,et al.  New Functional Materials Based on Self‐Assembling Organogels: From Serendipity towards Design , 2000 .

[55]  Richard G. Weiss,et al.  Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels. , 1997, Chemical reviews.

[56]  B. Feringa,et al.  Self‐Assembly of Bisurea Compounds in Organic Solvents and on Solid Substrates , 1997 .

[57]  E. Ostuni,et al.  Novel X‐ray Method for In Situ Determination of Gelator Strand Structure: Polymorphism of Cholesteryl Anthraquinone‐2‐carboxylate , 1996 .

[58]  Isao Yoshikawa,et al.  Nucleobase-containing gelators. , 2005, Topics in current chemistry.

[59]  Xiang‐Yang Liu Gelation with Small Molecules: from Formation Mechanism to NanostructureArchitecture. , 2005, Topics in current chemistry.

[60]  F. Vögtle,et al.  Systematic design of amide- and urea-type gelators with tailored properties. , 2005, Topics in current chemistry.

[61]  I. Hamachi,et al.  Semi-wet peptide/protein array using supramolecular hydrogel , 2004, Nature materials.

[62]  David K. Smith,et al.  Supramolecular dendritic two-component gel , 2001 .

[63]  K. Hanabusa,et al.  Two-component, small molecule gelling agents , 1993 .

[64]  J. Lehn,et al.  Molecular recognition directed self-assembly of ordered supramolecular strands by cocrystallization of complementary molecular components , 1990 .