Quantum autoencoders for efficient compression of quantum data

Classical autoencoders are neural networks that can learn efficient low-dimensional representations of data in higher-dimensional space. The task of an autoencoder is, given an input x, to map x to a lower dimensional point y such that x can likely be recovered from y. The structure of the underlying autoencoder network can be chosen to represent the data on a smaller dimension, effectively compressing the input. Inspired by this idea, we introduce the model of a quantum autoencoder to perform similar tasks on quantum data. The quantum autoencoder is trained to compress a particular data set of quantum states, where a classical compression algorithm cannot be employed. The parameters of the quantum autoencoder are trained using classical optimization algorithms. We show an example of a simple programmable circuit that can be trained as an efficient autoencoder. We apply our model in the context of quantum simulation to compress ground states of the Hubbard model and molecular Hamiltonians.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[3]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[4]  J. Cirac,et al.  Optimal creation of entanglement using a two-qubit gate , 2000, quant-ph/0011050.

[5]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[6]  Sachin S. Sapatnekar,et al.  IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems: Guest Editorial , 2004 .

[7]  F. Verstraete,et al.  Sequential generation of entangled multiqubit states. , 2005, Physical review letters.

[8]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[9]  Synthesis of quantum-logic circuits , 2004, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[10]  J. Cirac,et al.  Sequential generation of matrix-product states in cavity QED , 2006, quant-ph/0612101.

[11]  Cheng-Yuan Liou,et al.  Modeling word perception using the Elman network , 2008, Neurocomputing.

[12]  Klaus Molmer,et al.  Quantum learning by measurement and feedback , 2008, 0803.1418.

[13]  A. Winter,et al.  The mother of all protocols: restructuring quantum information’s family tree , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  J. P. Home,et al.  Realization of a programmable two-qubit quantum processor , 2009, 0908.3031.

[15]  Dexter Kozen,et al.  New , 2020, MFPS.

[16]  P. Love,et al.  The Bravyi-Kitaev transformation for quantum computation of electronic structure. , 2012, The Journal of chemical physics.

[17]  Martin Schwarz,et al.  Preparing projected entangled pair states on a quantum computer. , 2011, Physical review letters.

[18]  W. Marsden I and J , 2012 .

[19]  Giorgios Kollias,et al.  Universal Programmable Quantum Circuit Schemes to Emulate an Operator , 2012, The Journal of chemical physics.

[20]  Franco Nori,et al.  QuTiP: An open-source Python framework for the dynamics of open quantum systems , 2011, Comput. Phys. Commun..

[21]  D. Dixon,et al.  Chemical accuracy in ab initio thermochemistry and spectroscopy: current strategies and future challenges , 2012, Theoretical Chemistry Accounts.

[22]  Joseph M. Renes,et al.  One-Shot Lossy Quantum Data Compression , 2013, IEEE Transactions on Information Theory.

[23]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[24]  M. Wilde Quantum Information Theory: Noisy Quantum Shannon Theory , 2013 .

[25]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[26]  Mark M. Wilde,et al.  Quantum Information Theory , 2013 .

[27]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[28]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[29]  Cheng-Yuan Liou,et al.  Autoencoder for words , 2014, Neurocomputing.

[30]  R. Renner,et al.  One-Shot Decoupling , 2010, 1012.6044.

[31]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[32]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.

[33]  Ryan Babbush,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[34]  Sarah E. Sofia,et al.  The Bravyi-Kitaev transformation: Properties and applications , 2015 .

[35]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[36]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[37]  Ying Li,et al.  Efficient Variational Quantum Simulator Incorporating Active Error Minimization , 2016, 1611.09301.

[38]  William IEEE TRANSACTIONS ON INFORMATION THEORY VOL XX NO Y MONTH Signal Propagation and Noisy Circuits , 2019 .