A simple solvothermal route to controlled diameter germanium nanowires

A simple solvothermal method has been developed to synthesize germanium nanowires with excellent single crystalline diamond cubic structure that exploits the use of preformed Au nanoparticle seeds on high surface area alumina powders. The nanowires exhibit a narrow diameter distribution, with typical diameters of 40 ± 7 nm and 80 ± 5 nm, using 40 nm and 80 nm Au seeds, respectively. The preferred growth direction of the Ge nanowires is along the [111] direction. The use of high surface area alumina powder, modified by 3-aminopropyltriethoxysilane (APTES), provides an effective way to capture individual nanoparticle seeds, which prevents aggregation and provides monodispersed seeds for nanowire growth. This approach is a viable alternative to higher temperature vapor-phase methods, yielding materials of comparable quality and improved size control and thus represents a low cost route to controlled germanium nanowires.

[1]  H. Chew,et al.  Synthesis and structural characterization of germanium nanowires from glancing angle deposition , 2007 .

[2]  S. Kodambaka,et al.  Germanium Nanowire Growth Below the Eutectic Temperature , 2007, Science.

[3]  J. Boland,et al.  Ultimate-strength germanium nanowires. , 2006, Nano letters.

[4]  J. Prikulis,et al.  High‐Density Arrays of Germanium Nanowire Photoresistors , 2006 .

[5]  H. Föll,et al.  Long germanium nanowires prepared by electrochemical etching. , 2006, Nano letters.

[6]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[7]  B. Korgel,et al.  Germanium nanowire synthesis: An example of solid-phase seeded growth with nickel nanocrystals , 2005 .

[8]  H. Dai,et al.  Oxidation resistant germanium nanowires: bulk synthesis, long chain alkanethiol functionalization, and Langmuir-Blodgett assembly. , 2005, Journal of the American Chemical Society.

[9]  A. Diligenti,et al.  Fabrication of regular silicon microstructures by photo‐electrochemical etching of silicon , 2005 .

[10]  H. Ng,et al.  Growth of Individual Vertical Germanium Nanowires , 2005 .

[11]  Tobias Hanrath,et al.  Chemical surface passivation of Ge nanowires. , 2004, Journal of the American Chemical Society.

[12]  H. Dai,et al.  Surface chemistry and electrical properties of germanium nanowires. , 2004, Journal of the American Chemical Society.

[13]  Joshua E. Goldberger,et al.  SEMICONDUCTOR NANOWIRES AND NANOTUBES , 2004 .

[14]  Kirk J. Ziegler,et al.  Bistable nanoelectromechanical devices , 2004 .

[15]  B. Korgel,et al.  Carbon nanotube synthesis in supercritical toluene. , 2004, Journal of the American Chemical Society.

[16]  Xuema Li,et al.  Growth and Structure of Chemically Vapor Deposited Ge Nanowires on Si Substrates , 2004 .

[17]  Brian A. Korgel,et al.  Supercritical Fluid–Liquid–Solid (SFLS) Synthesis of Si and Ge Nanowires Seeded by Colloidal Metal Nanocrystals , 2003 .

[18]  H. Dai,et al.  Low-temperature synthesis of single-crystal germanium nanowires by chemical vapor deposition. , 2002, Angewandte Chemie.

[19]  B. Korgel,et al.  Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals. , 2002, Journal of the American Chemical Society.

[20]  S. Roth,et al.  Growth and electrical transport of germanium nanowires , 2001 .

[21]  Charles M. Lieber,et al.  Synthetic Control of the Diameter and Length of Single Crystal Semiconductor Nanowires , 2001 .

[22]  Yiying Wu,et al.  Melting and Welding Semiconductor Nanowires in Nanotubes , 2001 .

[23]  Peidong Yang,et al.  Direct Observation of Vapor-Liquid-Solid Nanowire Growth , 2001 .

[24]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[25]  James S. Harris,et al.  Ti-catalyzed Si nanowires by chemical vapor deposition: Microscopy and growth mechanisms , 2001 .

[26]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.

[27]  Peidong Yang,et al.  Germanium Nanowire Growth via Simple Vapor Transport , 2000 .

[28]  Kang L. Wang,et al.  Novel Methods of Nanoscale Wire Formation , 1999 .

[29]  Jiangtao Hu,et al.  Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires , 1999, Nature.

[30]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[31]  A. G. Cullis,et al.  The structural and luminescence properties of porous silicon , 1997 .

[32]  F. Rodríguez-Reinoso,et al.  Synthesis of SiC and Si3N4: An overview , 1995 .

[33]  J. Heath,et al.  A liquid solution synthesis of single crystal germanium quantum wires , 1993 .

[34]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.