Grow up and slow decay in the critical Sobolev case

We present conjectures on asymptotic behaviour of threshold solutions of the Cauchy problem for a semilinear heat equation with Sobolev critical nonlinearity. The conjectures say that, depending on the decay rate of initial data and the space dimension, the threshold solutions may grow up, stabilize, or decay to zero as $t→∞$. The rates of grow up or decay are computed formally using matched asymptotics.

[1]  M. Ishiwata On the asymptotic behavior of unbounded radial solutions for semilinear parabolic problems involving critical Sobolev exponent , 2010 .

[2]  E. Yanagida,et al.  On bounded and unbounded global solutions of a supercritical semilinear heat equation , 2003 .

[3]  C. Stinner,et al.  Very slow convergence rates in a semilinear parabolic equation , 2010 .

[4]  V. Galaktionov,et al.  Composite structure of global unbounded solutions of nonlinear heat equations with critical Sobolev exponents , 2003 .

[5]  E. Yanagida,et al.  Sharp estimates of the convergence rate for a semilinear parabolic equation with supercritical nonlinearity , 2008 .

[6]  M. Fila,et al.  Grow-up rate of solutions for a supercritical semilinear diffusion equation , 2004 .

[7]  Xuefeng Wang,et al.  On the Cauchy problem for reaction-diffusion equations , 1993 .

[8]  Tadashi Kawanago,et al.  Asymptotic behavior of solutions of a semilinear heat equation with subcritical nonlinearity , 1996 .

[9]  P. Souplet Sur l'asymptotique des solutions globales pour une équation de la chaleur semi-linéaire dans des domaines non bornés , 1996 .

[10]  Otared Kavian,et al.  Remarks on the large time behaviour of a nonlinear diffusion equation , 1987 .

[11]  M. Fila,et al.  Rate of convergence to a singular steady state of a supercritical parabolic equation , 2008 .

[12]  E. Yanagida,et al.  Nonstabilizing solutions and grow-up set for a supercritical semilinear diffusion equation , 2004, Differential and Integral Equations.

[13]  Victor A. Galaktionov,et al.  Continuation of blowup solutions of nonlinear heat equations in several space dimensions , 1997 .

[14]  M. Fila,et al.  Very slow grow-up of solutions of a semi-linear parabolic equation , 2011, Proceedings of the Edinburgh Mathematical Society.

[15]  Christian Stinner,et al.  The convergence rate for a semilinear parabolic equation with a critical exponent , 2011, Appl. Math. Lett..

[16]  Peter Polácik,et al.  Asymptotic behavior of threshold and sub-threshold solutions of a semilinear heat equation , 2008, Asymptot. Anal..

[17]  M. Fila,et al.  Convergence Rate for a Parabolic Equation with Supercritical Nonlinearity , 2005 .

[18]  C. Stinner Very slow convergence to zero for a supercritical semilinear parabolic equation , 2009, Advances in Differential Equations.

[19]  N. Mizoguchi Boundedness of global solutions for a supercritical semilinear heat equation and its application , 2005 .

[20]  F. Merle,et al.  Threshold and generic type I behaviors for a supercritical nonlinear heat equation , 2011 .

[21]  M. Fila,et al.  Grow-up rate of solutions of a semilinear parabolic equation with a critical exponent , 2007, Advances in Differential Equations.

[22]  Pavol Quittner,et al.  Superlinear Parabolic Problems , 2007, Birkhäuser Advanced Texts Basler Lehrbücher.

[23]  M. Fila,et al.  Slow convergence to zero for a parabolic equation with a supercritical nonlinearity , 2007 .

[24]  Wei-Ming Ni,et al.  On the Stability and Instability of Positive Steady States of a Semilinear Heat Equation in $mathbb{R}^n$ (eng) , 1992 .

[25]  Wei-Ming Ni,et al.  On the asymptotic behavior of solutions of certain quasilinear parabolic equations , 1984 .

[26]  Takashi Suzuki,et al.  Semilinear parabolic equation in RN associated with critical Sobolev exponent , 2010 .

[27]  N. Mizoguchi On the behavior of solutions for a semilinear parabolic equation with supercritical nonlinearity , 2002 .

[28]  M. Fila,et al.  Optimal lower bound of the grow-up rate for a supercritical parabolic equation , 2006 .

[29]  H. Fujita On the blowing up of solutions fo the Cauchy problem for u_t=Δu+u^ , 1966 .

[30]  Xuefeng Wang,et al.  Further study on a nonlinear heat equation , 2001 .

[31]  F. Merle,et al.  Classification of type I and type II behaviors for a supercritical nonlinear heat equation , 2009 .

[32]  Xuefeng Wang,et al.  On the stability and instability of positive steady states of a semilinear heat equation in ℝn , 1992 .

[33]  Hiroshi Matano,et al.  Immediate Regularization after Blow-up , 2005, SIAM J. Math. Anal..

[34]  P. Quittner The decay of global solutions of a semilinear heat equation , 2008 .