Conditioning of a Spectral Indicator for the Detection of Rotor Faults of an Induction Motor by Using the TSA Method

The purpose of this paper is to present a method to detect and diagnose an induction motor rotor fault, by exploiting the cyclostationary characteristics of electrical signals. In fact, the induction motor defects are the most complex in terms of detection since they interact with the 50 Hz carrier frequency within a restricted band around 50 Hz. The test bench includes an industrial three-phase wound rotor asynchronous motor of 400V, 6.2A, 50Hz, 3kW, 1385rpm characteristics. The rotor fault has been carried out by adding an extra 40mΩ resistance on one of the rotor phases (i.e. 10% of the rotor resistance value per phase, Rr=0,4Ω). From the stator voltage and current acquisition, and by application of the Time Synchronous Averaging (TSA), the electrical signal is conditioned in order to obtain a sensitive spectral indicator allowing to diagnose the motor defects by the Motor Current Signature Analysis (MCSA) method.

[1]  M. E. H. Benbouzid,et al.  What Stator Current Processing Based Technique to Use for Induction Motor Rotor Faults Diagnosis , 2002, IEEE Power Engineering Review.

[2]  P. D. McFadden,et al.  A Signal Processing Technique for Detecting Local Defects in a Gear from the Signal Average of the Vibration , 1985 .

[3]  W. Bennett Statistics of regenerative digital transmission , 1958 .

[4]  G. Salles Surveillance et diagnostic des défauts de la charge d'un entraînement par machine asynchrone , 1997 .

[5]  W. T. Thomson,et al.  Case histories of current signature analysis to detect faults in induction motor drives , 2003, IEEE International Electric Machines and Drives Conference, 2003. IEMDC'03..

[6]  W. T. Thomson,et al.  Motor Current Signature Analysis To Detect Faults In Induction Motor Drives - Fundamentals, Data Interpretation, And Industrial Case Histories. , 2003 .

[7]  P. D. McFadden,et al.  A revised model for the extraction of periodic waveforms by time domain averaging , 1987 .

[8]  Olivier Ondel,et al.  Diagnostic par reconnaissance des formes : application à un ensemble convertisseur - machine asynchrone. (Diagnosis by Pattern Recognition: application on a set inverter - induction machine) , 2006 .

[9]  A. Ibrahim Contribution au diagnostic de machines électromagnétiques : exploitation des signaux électriques et de la vitesse instantanée , 2009 .

[10]  Gaëtan Didier Modélisation et diagnostic de la machine asynchrone en présence de défaillances , 2004 .

[11]  Frédéric Bonnardot,et al.  Comparaison entre les analyses angulaire et temporelle des signaux vibratoires de machines tournantes : étude du concept de cyclostationnarité floue , 2004 .

[12]  Mohamed Cherkaoui,et al.  Conditioning of a statistical indicator for the detection of an asynchronous machine rotor faults , 2012 .

[13]  Mohamed Benbouzid,et al.  Induction motors' faults detection and localization using stator current advanced signal processing techniques , 1999 .