Heuristic Algorithms for Solving Bounded Diameter Minimum Spanning Tree Problem and Its Application to Genetic Algorithm Development

) problem is a combinatorial optimization problem that appears in many applications such as wire-based communication network design when certain aspects of quality of service have to be considered, in ad-hoc wireless network (K. Bala, K. Petropoulos, T.E. Sterm, 1993) and in the areas of data compression and distributed mutual exclusion algorithms (K. Raymond, 1989; A. Bookstein, S. T. Klein, 1996). A more comprehensive discussion of the real-world applications of BDMST was given in Abdalla’s seminal dissertation (Abdalla, 2001). Before the

[1]  Nguyen Xuan Hoai,et al.  A new hybrid Genetic Algorithm for solving the Bounded Diameter Minimum Spanning Tree problem , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[2]  G. Raidl,et al.  A Permutation-Coded Evolutionary Algorithm for the Bounded-Diameter Minimum Spanning Tree Problem , 2003 .

[3]  Kerry Raymond,et al.  A tree-based algorithm for distributed mutual exclusion , 1989, TOCS.

[4]  Thomas E. Stern,et al.  Multicasting in a linear lightwave network , 1993, IEEE INFOCOM '93 The Conference on Computer Communications, Proceedings.

[5]  G. Raidl,et al.  A New 0 – 1 ILP Approach for the Bounded Diameter Minimum Spanning Tree Problem , 2005 .

[6]  Guy Kortsarz,et al.  Approximating the Weight of Shallow Steiner Trees , 1999, Discret. Appl. Math..

[7]  RaymondKerry A tree-based algorithm for distributed mutual exclusion , 1989 .

[8]  Shmuel Tomi Klein,et al.  Compression of correlated bit-vectors , 1991, Inf. Syst..

[9]  Alok Singh,et al.  Improved heuristics for the bounded-diameter minimum spanning tree problem , 2007, Soft Comput..

[10]  Franz Rothlauf,et al.  Representations for genetic and evolutionary algorithms , 2002, Studies in Fuzziness and Soft Computing.

[11]  Lou Caccetta,et al.  Computational methods for the diameter restricted minimum weight spanning tree problem , 1994, Australas. J Comb..

[12]  Martin Gruber,et al.  Variable Neighborhood Search for the Bounded Diameter Minimum Spanning Tree Problem , 2005 .

[13]  Narsingh Deo,et al.  Random-tree Diameter and the Diameter-constrained MST , 2002, Int. J. Comput. Math..

[14]  D. Peleg,et al.  Approximating shallow-light trees , 1997, SODA '97.

[15]  Bryant A. Julstrom,et al.  Edge sets: an effective evolutionary coding of spanning trees , 2003, IEEE Trans. Evol. Comput..

[16]  Bryant A. Julstrom,et al.  Encoding Bounded-Diameter Spanning Trees with Permutations and with Random Keys , 2004, GECCO.

[17]  Referências Bibliográficas Computing a diameter-constrained minimum spanning tree , 2006 .

[18]  Cristina Requejo,et al.  A 2-path approach for odd-diameter-constrained minimum spanning and Steiner trees , 2004, Networks.

[19]  Cristina Requejo,et al.  A 2-path approach for odd-diameter-constrained minimum spanning and Steiner trees , 2004 .

[20]  Bryant A. Julstrom,et al.  Greedy heuristics and an evolutionary algorithm for the bounded-diameter minimum spanning tree problem , 2003, SAC '03.

[21]  Jano I. van Hemert,et al.  Neighbourhood searches for the bounded diameter minimum spanning tree problem embedded in a VNS, EA, and ACO , 2006, GECCO.

[22]  G. Raidl,et al.  Prüfer numbers: a poor representation of spanning trees for evolutionary search , 2001 .

[23]  R. Prim Shortest connection networks and some generalizations , 1957 .

[24]  Huynh Thi Thanh Binh,et al.  New Recombination Operator in Genetic Algorithm For Solving the Bounded Diameter Minimum Spanning Tree Problem , 2007, 2007 IEEE International Conference on Research, Innovation and Vision for the Future.

[25]  Ayman M. Abdalla,et al.  Computing a diameter-constrained minimum spanning tree , 2001 .

[26]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[27]  Charles C. Palmer,et al.  Representing trees in genetic algorithms , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.