Domain wall encoding of discrete variables for quantum annealing and QAOA

In this paper I propose a new method of encoding discrete variables into Ising model qubits for quantum optimization. The new method is based on the physics of domain walls in one dimensional Ising spin chains. I find that these encodings and the encoding of arbitrary two variable interactions is possible with only two body Ising terms. Following on from similar results for the `one hot' method of encoding discrete variables [Hadfield et. al. Algorithms 12.2 (2019): 34] I also demonstrate that it is possible to construct two body mixer terms which do not leave the logical subspace, an important consideration for optimising using the quantum alternating operator ansatz (QAOA). I additionally discuss how, since the couplings in the domain wall encoding only need to be ferromagnetic and therefore could in principle be much stronger than anti-ferromagnetic couplers, application specific quantum annealers for discrete problems based on this construction may be beneficial. Finally, I compare embedding for synthetic scheduling and colouring problems with the domain wall and one hot encodings on two graphs which are relevant for quantum annealing, the chimera graph and the Pegasus graph. For every case I examine I find a similar or better performance from the domain wall encoding as compared to one hot, but this advantage is highly dependent on the structure of the problem. For encoding some problems, I find an advantage similar to the one found by embedding in a Pegasus graph compared to embedding in a chimera graph.

[1]  Ken R. Duffy,et al.  Complexity analysis of a decentralised graph colouring algorithm , 2008, Inf. Process. Lett..

[2]  Agents and Multi-agent Systems: Technologies and Applications 2019, 13th KES International Conference, KES-AMSTA-2019 St. Julians, Malta, June 2019 Proceedings , 2020, KES-AMSTA.

[3]  Kazuyuki Aihara,et al.  A fully programmable 100-spin coherent Ising machine with all-to-all connections , 2016, Science.

[4]  E. Rieffel,et al.  Near-optimal quantum circuit for Grover's unstructured search using a transverse field , 2017, 1702.02577.

[5]  Alan Crispin,et al.  Quantum Annealing Algorithm for Vehicle Scheduling , 2013, 2013 IEEE International Conference on Systems, Man, and Cybernetics.

[6]  Tobias Stollenwerk,et al.  Flight Gate Assignment with a Quantum Annealer , 2018, QTOP@NetSys.

[7]  Andrew M. Childs,et al.  Spatial search by quantum walk , 2003, quant-ph/0306054.

[8]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[9]  Nicholas Chancellor,et al.  Modernizing quantum annealing using local searches , 2016, 1606.06833.

[10]  G. Rose,et al.  Finding low-energy conformations of lattice protein models by quantum annealing , 2012, Scientific Reports.

[11]  R. Orús,et al.  Forecasting financial crashes with quantum computing , 2018, Physical Review A.

[12]  Nicholas C. Rubin,et al.  $XY$-mixers: analytical and numerical results for QAOA , 2019, 1904.09314.

[13]  Itay Hen,et al.  Driver Hamiltonians for constrained optimization in quantum annealing , 2016, 1602.07942.

[14]  Aidan Roy,et al.  Next-Generation Topology of D-Wave Quantum Processors , 2020, 2003.00133.

[15]  Ryan O'Donnell,et al.  Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? , 2007, SIAM J. Comput..

[16]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: I. The parameter setting problem , 2008, Quantum Inf. Process..

[17]  Jiangfeng Du,et al.  High-fidelity adiabatic quantum computation using the intrinsic Hamiltonian of a spin system: Application to the experimental factorization of 291311 , 2017, 1706.08061.

[18]  Itay Hen,et al.  Quantum Annealing for Constrained Optimization , 2015, 1508.04212.

[19]  Aidan Roy,et al.  Mapping Constrained Optimization Problems to Quantum Annealing with Application to Fault Diagnosis , 2016, Front. ICT.

[20]  Aidan Roy,et al.  Discrete optimization using quantum annealing on sparse Ising models , 2014, Front. Phys..

[21]  Nicholas Chancellor,et al.  Finding spin glass ground states using quantum walks , 2019, New Journal of Physics.

[22]  Alan Crispin,et al.  Quantum annealing of the graph coloring problem , 2011, Discret. Optim..

[23]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[24]  Andrea Rocchetto,et al.  Stabilizers as a design tool for new forms of the Lechner-Hauke-Zoller annealer , 2016, Science Advances.

[25]  V. Kendon,et al.  Protecting quantum memories using coherent parity check codes , 2017, Quantum Science and Technology.

[26]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design , 2010, Quantum Inf. Process..

[27]  I. Hen,et al.  Temperature Scaling Law for Quantum Annealing Optimizers. , 2017, Physical review letters.

[28]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[29]  et al.,et al.  Jupyter Notebooks - a publishing format for reproducible computational workflows , 2016, ELPUB.

[30]  M. Marzec Portfolio Optimization: Applications in Quantum Computing , 2014 .

[31]  Nicholas Chancellor,et al.  Domain wall encoding of integer variables for quantum annealing and QAOA , 2019 .

[32]  Davide Venturelli,et al.  Reverse quantum annealing approach to portfolio optimization problems , 2018, Quantum Machine Intelligence.

[33]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[34]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm Applied to a Bounded Occurrence Constraint Problem , 2014, 1412.6062.

[35]  Guy Kindler,et al.  Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[36]  Rupak Biswas,et al.  Quantum Annealing Applied to De-Conflicting Optimal Trajectories for Air Traffic Management , 2017, IEEE Transactions on Intelligent Transportation Systems.

[37]  Guido van Rossum,et al.  The Python language reference manual: for Python version 3.2 , 2011 .

[38]  Dániel Marx,et al.  RAPH COLORING PROBLEMS AND THEIR APPLICATIONS IN SCHEDULING , 2022 .

[39]  M. W. Johnson,et al.  Demonstration of a Nonstoquastic Hamiltonian in Coupled Superconducting Flux Qubits , 2019, Physical Review Applied.

[40]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[41]  Edward Farhi,et al.  HOW TO MAKE THE QUANTUM ADIABATIC ALGORITHM FAIL , 2005 .

[42]  Hartmut Neven,et al.  Optimizing Variational Quantum Algorithms using Pontryagin's Minimum Principle , 2016, ArXiv.

[43]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[44]  Ross Duncan,et al.  On the qubit routing problem , 2019, TQC.

[45]  Walter Vinci,et al.  Maximum-Entropy Inference with a Programmable Annealer , 2015, Scientific Reports.

[46]  Alec Maassen van den Brink,et al.  Mediated tunable coupling of flux qubits , 2005 .

[47]  D. Venturelli,et al.  Quantum Annealing Implementation of Job-Shop Scheduling , 2015, 1506.08479.

[48]  P. Zoller,et al.  A quantum annealing architecture with all-to-all connectivity from local interactions , 2015, Science Advances.

[49]  Rupak Biswas,et al.  From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz , 2017, Algorithms.

[50]  Vicky Choi Different Adiabatic Quantum Optimization Algorithms for the NP-Complete Exact Cover and 3SAT Problems , 2010, ArXiv.

[51]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[52]  Awad Aubad,et al.  Towards a framework building for social systems modelling , 2020 .

[53]  Alan Crispin,et al.  Graph Coloring with a Distributed Hybrid Quantum Annealing Algorithm , 2011, KES-AMSTA.

[54]  S. C. Benjamin,et al.  A Direct Mapping of Max k-SAT and High Order Parity Checks to a Chimera Graph , 2016, Scientific Reports.

[55]  S. Marsh,et al.  A quantum walk-assisted approximate algorithm for bounded NP optimisation problems , 2018, Quantum Inf. Process..

[56]  Travis E. Oliphant,et al.  Guide to NumPy , 2015 .

[57]  Shinichiro Taguchi,et al.  Improving solutions by embedding larger subproblems in a D-Wave quantum annealer , 2019, Scientific Reports.

[58]  Alan M. Frieze,et al.  Improved approximation algorithms for MAXk-CUT and MAX BISECTION , 1995, Algorithmica.

[59]  J. Christopher Beck,et al.  A Hybrid Quantum-Classical Approach to Solving Scheduling Problems , 2016, SOCS.

[60]  Vicky Choi,et al.  Adiabatic Quantum Algorithms for the NP-Complete Maximum-Weight Independent Set, Exact Cover and 3SAT Problems , 2010, ArXiv.

[61]  John Kubiatowicz,et al.  Automated generation of layout and control for quantum circuits , 2007, CF '07.

[62]  Daniel A. Lidar,et al.  Simulated-quantum-annealing comparison between all-to-all connectivity schemes , 2016, 1603.03755.

[63]  Ken-ichi Kawarabayashi,et al.  A coherent Ising machine for 2000-node optimization problems , 2016, Science.

[64]  B. Bollobás The evolution of random graphs , 1984 .

[65]  David P. Dailey Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete , 1980, Discret. Math..

[66]  Nikesh S. Dattani,et al.  Pegasus: The second connectivity graph for large-scale quantum annealing hardware , 2019, ArXiv.

[67]  R. Blume-Kohout,et al.  Climbing Mount Scalable: Physical Resource Requirements for a Scalable Quantum Computer , 2002, quant-ph/0204157.

[68]  Fred L. Drake,et al.  The Python Language Reference Manual , 1999 .

[69]  E. Rieffel,et al.  XY mixers: Analytical and numerical results for the quantum alternating operator ansatz , 2020 .