Genome-scale models of bacterial metabolism: reconstruction and applications

Genome-scale metabolic models bridge the gap between genome-derived biochemical information and metabolic phenotypes in a principled manner, providing a solid interpretative framework for experimental data related to metabolic states, and enabling simple in silico experiments with whole-cell metabolism. Models have been reconstructed for almost 20 bacterial species, so far mainly through expert curation efforts integrating information from the literature with genome annotation. A wide variety of computational methods exploiting metabolic models have been developed and applied to bacteria, yielding valuable insights into bacterial metabolism and evolution, and providing a sound basis for computer-assisted design in metabolic engineering. Recent advances in computational systems biology and high-throughput experimental technologies pave the way for the systematic reconstruction of metabolic models from genomes of new species, and a corresponding expansion of the scope of their applications. In this review, we provide an introduction to the key ideas of metabolic modeling, survey the methods, and resources that enable model reconstruction and refinement, and chart applications to the investigation of global properties of metabolic systems, the interpretation of experimental results, and the re-engineering of their biochemical capabilities.

[1]  Robert L. Campbell,et al.  ESCHERICHIA COLI K-12* , 1973 .

[2]  A. H. Stouthamer,et al.  Utilization of energy for growth and maintenance in continuous and batch cultures of microorganisms. A reevaluation of the method for the determination of ATP production by measuring molar growth yields. , 1973, Biochimica et biophysica acta.

[3]  D. Fell,et al.  Metabolic control analysis. The effects of high enzyme concentrations. , 1990, European journal of biochemistry.

[4]  J. Bailey,et al.  Toward a science of metabolic engineering , 1991, Science.

[5]  D. Fell Metabolic control analysis: a survey of its theoretical and experimental development. , 1992, The Biochemical journal.

[6]  Gilles Klopman,et al.  META. 1. A Program for the Evaluation of Metabolic Transformation of Chemicals , 1994, J. Chem. Inf. Comput. Sci..

[7]  B. Palsson,et al.  Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use , 1994, Bio/Technology.

[8]  George Stephanopoulos,et al.  Modeling of Isotope Distributions and Intracellular Fluxes in Metabolic Networks Using Atom Mapping Matrices , 1994 .

[9]  B. Palsson,et al.  Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110 , 1994, Applied and environmental microbiology.

[10]  Edda Klipp,et al.  Systems Biology , 1994 .

[11]  A. Steinbüchel,et al.  Biochemical and Molecular Characterization of theBacillus subtilis Acetoin Catabolic Pathway , 1999, Journal of bacteriology.

[12]  S. Salzberg,et al.  Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.

[13]  Juan Carlos Nuño,et al.  METATOOL: for studying metabolic networks , 1999, Bioinform..

[14]  S. Gygi,et al.  Correlation between Protein and mRNA Abundance in Yeast , 1999, Molecular and Cellular Biology.

[15]  W. Wiechert,et al.  Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems. , 1999, Biotechnology and bioengineering.

[16]  B. Palsson,et al.  The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[17]  D. Fell,et al.  A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks , 2000, Nature Biotechnology.

[18]  B. Palsson,et al.  Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis. , 2000, Journal of theoretical biology.

[19]  Alex Bateman,et al.  InterPro: An Integrated Documentation Resource for Protein Families, Domains and Functional Sites , 2002, Briefings Bioinform..

[20]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[21]  Masanori Arita,et al.  Metabolic reconstruction using shortest paths , 2000, Simul. Pract. Theory.

[22]  B. Palsson,et al.  Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. , 2000, Biotechnology and bioengineering.

[23]  B. Bochner,et al.  Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. , 2001, Genome research.

[24]  B. Palsson,et al.  In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data , 2001, Nature Biotechnology.

[25]  B. Palsson,et al.  Regulation of gene expression in flux balance models of metabolism. , 2001, Journal of theoretical biology.

[26]  W. Wiechert 13C metabolic flux analysis. , 2001, Metabolic engineering.

[27]  J J Heijnen,et al.  A priori analysis of metabolic flux identifiability from (13)C-labeling data. , 2001, Biotechnology and bioengineering.

[28]  H. Westerhoff,et al.  Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway , 2001, FEBS letters.

[29]  M. Borodovsky,et al.  GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. , 2001, Nucleic acids research.

[30]  B. Palsson,et al.  Characterizing the metabolic phenotype: A phenotype phase plane analysis , 2002, Biotechnology and bioengineering.

[31]  J. Mekalanos,et al.  A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[32]  M. Lidstrom,et al.  Stoichiometric model for evaluating the metabolic capabilities of the facultative methylotroph Methylobacterium extorquens AM1, with application to reconstruction of C(3) and C(4) metabolism. , 2002, Biotechnology and bioengineering.

[33]  Peter D. Karp,et al.  The Pathway Tools software , 2002, ISMB.

[34]  B. Palsson,et al.  Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth , 2002, Nature.

[35]  Peter Willett,et al.  Heuristics for Similarity Searching of Chemical Graphs Using a Maximum Common Edge Subgraph Algorithm , 2002, J. Chem. Inf. Comput. Sci..

[36]  K. Shimizu,et al.  Integration of the information from gene expression and metabolic fluxes for the analysis of the regulatory mechanisms in Synechocystis , 2002, Applied Microbiology and Biotechnology.

[37]  H. Qian,et al.  Energy balance for analysis of complex metabolic networks. , 2002, Biophysical journal.

[38]  G. Church,et al.  Genome-Scale Metabolic Model of Helicobacter pylori 26695 , 2002, Journal of bacteriology.

[39]  Jason A. Papin,et al.  The genome-scale metabolic extreme pathway structure in Haemophilus influenzae shows significant network redundancy. , 2002, Journal of theoretical biology.

[40]  Daniel Hanisch,et al.  Co-clustering of biological networks and gene expression data , 2002, ISMB.

[41]  S. Schuster,et al.  Metabolic network structure determines key aspects of functionality and regulation , 2002, Nature.

[42]  G. Church,et al.  Analysis of optimality in natural and perturbed metabolic networks , 2002 .

[43]  A. Burgard,et al.  Optimization-based framework for inferring and testing hypothesized metabolic objective functions. , 2003, Biotechnology and bioengineering.

[44]  P. Khatri,et al.  Global functional profiling of gene expression. , 2003, Genomics.

[45]  B. Palsson,et al.  An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR) , 2003, Genome Biology.

[46]  A. Burgard,et al.  Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization , 2003, Biotechnology and bioengineering.

[47]  Masanori Arita In silico atomic tracing by substrate-product relationships in Escherichia coli intermediary metabolism. , 2003, Genome research.

[48]  C. Claudel-Renard,et al.  Enzyme-specific profiles for genome annotation: PRIAM. , 2003, Nucleic acids research.

[49]  An-Ping Zeng,et al.  Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms , 2003, Bioinform..

[50]  Grégory Nuel,et al.  AMIGene: Annotation of MIcrobial Genes , 2003, Nucleic Acids Res..

[51]  S. Ehrlich,et al.  Essential Bacillus subtilis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Douglas L. Brutlag,et al.  Remote homology detection: a motif based approach , 2003, ISMB.

[53]  Frédéric Boyer,et al.  Ab initio reconstruction of metabolic pathways , 2003, ECCB.

[54]  R. Mahadevan,et al.  The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. , 2003, Metabolic engineering.

[55]  Eric Haugen,et al.  Comprehensive transposon mutant library of Pseudomonas aeruginosa , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[56]  B. Palsson,et al.  Thirteen Years of Building Constraint-Based In Silico Models of Escherichia coli , 2003, Journal of bacteriology.

[57]  R. Overbeek,et al.  Missing genes in metabolic pathways: a comparative genomics approach. , 2003, Current opinion in chemical biology.

[58]  P. Khatri,et al.  Global functional profiling of gene expression ? ? This work was funded in part by a Sun Microsystem , 2003 .

[59]  Daniel Segrè,et al.  From annotated genomes to metabolic flux models and kinetic parameter fitting. , 2003, Omics : a journal of integrative biology.

[60]  Jason A. Papin,et al.  Metabolic pathways in the post-genome era. , 2003, Trends in biochemical sciences.

[61]  M. Kanehisa,et al.  Heuristics for chemical compound matching. , 2003, Genome informatics. International Conference on Genome Informatics.

[62]  Steffen Klamt,et al.  Two approaches for metabolic pathway analysis? , 2003, Trends in biotechnology.

[63]  Sunwon Park,et al.  MetaFluxNet, a program package for metabolic pathway construction and analysis, and its use in large-scale metabolic flux analysis of Escherichia coli. , 2003, Genome informatics. International Conference on Genome Informatics.

[64]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[65]  K. Buetow,et al.  A computational approach to measuring coherence of gene expression in pathways. , 2004, Genomics.

[66]  Peter D. Karp,et al.  A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases , 2004, BMC Bioinformatics.

[67]  C. Pál,et al.  Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast , 2004, Nature.

[68]  Jason A. Papin,et al.  Comparison of network-based pathway analysis methods. , 2004, Trends in biotechnology.

[69]  J. Nielsen,et al.  Integration of gene expression data into genome-scale metabolic models. , 2004, Metabolic engineering.

[70]  B. Palsson,et al.  Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. , 2004, Genome research.

[71]  Markus J. Herrgård,et al.  Integrating high-throughput and computational data elucidates bacterial networks , 2004, Nature.

[72]  Monica Riley,et al.  GenProtEC: an updated and improved analysis of functions of Escherichia coli K-12 proteins , 2004, Nucleic Acids Res..

[73]  A. Barabasi,et al.  Global organization of metabolic fluxes in the bacterium Escherichia coli , 2004, Nature.

[74]  Reinhart Heinrich,et al.  Structural analysis of expanding metabolic networks. , 2004, Genome informatics. International Conference on Genome Informatics.

[75]  Sang Yup Lee,et al.  The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens , 2004, Nature Biotechnology.

[76]  Peter D. Karp,et al.  MetaCyc: a multiorganism database of metabolic pathways and enzymes , 2005, Nucleic Acids Res..

[77]  Steffen Klamt,et al.  Minimal cut sets in biochemical reaction networks , 2004, Bioinform..

[78]  Matteo Pellegrini,et al.  Prolinks: a database of protein functional linkages derived from coevolution , 2004, Genome Biology.

[79]  U. Sauer,et al.  High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. , 2004, Analytical biochemistry.

[80]  Costas D Maranas,et al.  OptStrain: a computational framework for redesign of microbial production systems. , 2004, Genome research.

[81]  B. Palsson,et al.  Genome-scale models of microbial cells: evaluating the consequences of constraints , 2004, Nature Reviews Microbiology.

[82]  A. Saghatelian,et al.  Assignment of endogenous substrates to enzymes by global metabolite profiling. , 2004, Biochemistry.

[83]  H. Qian,et al.  Thermodynamic constraints for biochemical networks. , 2004, Journal of theoretical biology.

[84]  Kiran Raosaheb Patil,et al.  Use of genome-scale microbial models for metabolic engineering. , 2004, Current opinion in biotechnology.

[85]  G. Schneider,et al.  Advances in the prediction of protein targeting signals , 2004, Proteomics.

[86]  Jibin Sun,et al.  IdentiCS – Identification of coding sequence and in silico reconstruction of the metabolic network directly from unannotated low-coverage bacterial genome sequence , 2004, BMC Bioinformatics.

[87]  C. Schilling,et al.  Flux coupling analysis of genome-scale metabolic network reconstructions. , 2004, Genome research.

[88]  H. J. Greenberg,et al.  Monte Carlo sampling can be used to determine the size and shape of the steady-state flux space. , 2004, Journal of theoretical biology.

[89]  Markus J. Herrgård,et al.  Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. , 2004, Genome research.

[90]  Ian T. Paulsen,et al.  TransportDB: a relational database of cellular membrane transport systems , 2004, Nucleic Acids Res..

[91]  Anne E Carpenter,et al.  Systematic genome-wide screens of gene function , 2004, Nature Reviews Genetics.

[92]  J. Nielsen,et al.  Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism. , 2005, Genome research.

[93]  B. Palsson,et al.  k-Cone analysis: determining all candidate values for kinetic parameters on a network scale. , 2005, Biophysical journal.

[94]  B. Palsson,et al.  Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation , 2005, BMC Microbiology.

[95]  Yoav Freund,et al.  Identifying metabolic enzymes with multiple types of association evidence , 2006, BMC Bioinformatics.

[96]  Bas Teusink,et al.  In Silico Reconstruction of the Metabolic Pathways of Lactobacillus plantarum: Comparing Predictions of Nutrient Requirements with Those from Growth Experiments , 2005, Applied and Environmental Microbiology.

[97]  J. Nielsen,et al.  Uncovering transcriptional regulation of metabolism by using metabolic network topology. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[98]  Cathy H. Wu,et al.  The Universal Protein Resource (UniProt) , 2004, Nucleic Acids Res..

[99]  Hong Qian,et al.  Ab initio prediction of thermodynamically feasible reaction directions from biochemical network stoichiometry. , 2005, Metabolic engineering.

[100]  Chunhui Li,et al.  Exploring the diversity of complex metabolic networks , 2005, Bioinform..

[101]  C. Pál,et al.  Adaptive evolution of bacterial metabolic networks by horizontal gene transfer , 2005, Nature Genetics.

[102]  D. Vitkup,et al.  Predicting genes for orphan metabolic activities using phylogenetic profiles , 2006, Genome Biology.

[103]  U. Sauer,et al.  Metabolic functions of duplicate genes in Saccharomyces cerevisiae. , 2005, Genome research.

[104]  Gregory Stephanopoulos,et al.  Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets , 2005, Nature Biotechnology.

[105]  Masaru Tomita,et al.  Theoretical Biology and Medical Modelling , 2022 .

[106]  B. Palsson,et al.  Expanded Metabolic Reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an In Silico Genome-Scale Characterization of Single- and Double-Deletion Mutants , 2005, Journal of bacteriology.

[107]  G. Stephanopoulos,et al.  Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. , 2005, Metabolic engineering.

[108]  F. Blattner,et al.  In silico design and adaptive evolution of Escherichia coli for production of lactic acid. , 2005, Biotechnology and bioengineering.

[109]  Naryttza N. Diaz,et al.  The Subsystems Approach to Genome Annotation and its Use in the Project to Annotate 1000 Genomes , 2005, Nucleic acids research.

[110]  H. Mori,et al.  Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. , 2006, DNA research : an international journal for rapid publication of reports on genes and genomes.

[111]  Martin J. Lercher,et al.  Horizontal gene transfer depends on gene content of the host , 2005, ECCB/JBI.

[112]  W. Dunn,et al.  Measuring the metabolome: current analytical technologies. , 2005, The Analyst.

[113]  Ádám M. Halász,et al.  Investigating metabolite essentiality through genome-scale analysis of Escherichia coli production capabilities , 2005, Bioinform..

[114]  Jens Nielsen,et al.  Evolutionary programming as a platform for in silico metabolic engineering , 2005, BMC Bioinformatics.

[115]  Bernhard O Palsson,et al.  The global transcriptional regulatory network for metabolism in Escherichia coli exhibits few dominant functional states. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[116]  Bernhard O. Palsson,et al.  Metabolite coupling in genome-scale metabolic networks , 2006, BMC Bioinformatics.

[117]  Dick B Janssen,et al.  Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities. , 2005, Environmental microbiology.

[118]  Costas D Maranas,et al.  Elucidation and structural analysis of conserved pools for genome-scale metabolic reconstructions. , 2005, Biophysical journal.

[119]  Jochen Förster,et al.  Modeling Lactococcus lactis using a genome-scale flux model , 2005, BMC Microbiology.

[120]  Anne Kümmel,et al.  In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network. , 2005, Biotechnology and bioengineering.

[121]  Hugh D. Spence,et al.  Minimum information requested in the annotation of biochemical models (MIRIAM) , 2005, Nature Biotechnology.

[122]  E. Ruppin,et al.  Regulatory on/off minimization of metabolic flux changes after genetic perturbations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[123]  Masaru Tomita,et al.  GEM System: automatic prototyping of cell-wide metabolic pathway models from genomes , 2006, BMC Bioinformatics.

[124]  Frederick M Ausubel,et al.  Correction for Liberati et al., An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants , 2006, Proceedings of the National Academy of Sciences.

[125]  Lynda B. M. Ellis,et al.  The University of Minnesota Biocatalysis/Biodegradation Database: the first decade , 2005, Nucleic Acids Res..

[126]  B. Palsson,et al.  Systems approach to refining genome annotation , 2006, Proceedings of the National Academy of Sciences.

[127]  M. Poolman ScrumPy: metabolic modelling with Python. , 2006, Systems biology.

[128]  S. Oliver,et al.  Chance and necessity in the evolution of minimal metabolic networks , 2006, Nature.

[129]  Timothy S. Ham,et al.  Production of the antimalarial drug precursor artemisinic acid in engineered yeast , 2006, Nature.

[130]  Rick Stevens,et al.  Essential genes on metabolic maps. , 2006, Current opinion in biotechnology.

[131]  Steffen Klamt,et al.  Structural and functional analysis of cellular networks with CellNetAnalyzer , 2007, BMC Systems Biology.

[132]  Ralf Steuer,et al.  Review: On the analysis and interpretation of correlations in metabolomic data , 2006, Briefings Bioinform..

[133]  B. Palsson,et al.  The model organism as a system: integrating 'omics' data sets , 2006, Nature Reviews Molecular Cell Biology.

[134]  John Gould,et al.  Toward the automated generation of genome-scale metabolic networks in the SEED , 2007, BMC Bioinformatics.

[135]  Bas Teusink,et al.  Analysis of Growth of Lactobacillus plantarum WCFS1 on a Complex Medium Using a Genome-scale Metabolic Model* , 2006, Journal of Biological Chemistry.

[136]  B. Palsson,et al.  Towards multidimensional genome annotation , 2006, Nature Reviews Genetics.

[137]  Bernhard O. Palsson,et al.  Iterative Reconstruction of Transcriptional Regulatory Networks: An Algorithmic Approach , 2006, PLoS Comput. Biol..

[138]  Bas Teusink,et al.  Accelerating the reconstruction of genome-scale metabolic networks , 2006, BMC Bioinformatics.

[139]  B. Palsson,et al.  Characterization of Metabolism in the Fe(III)-Reducing Organism Geobacter sulfurreducens by Constraint-Based Modeling , 2006, Applied and Environmental Microbiology.

[140]  Vinay Satish Kumar,et al.  Optimization based automated curation of metabolic reconstructions , 2007, BMC Bioinformatics.

[141]  Matthias Heinemann,et al.  Systematic assignment of thermodynamic constraints in metabolic network models , 2006, BMC Bioinformatics.

[142]  U. Sauer,et al.  Article number: 62 REVIEW Metabolic networks in motion: 13 C-based flux analysis , 2022 .

[143]  E. Ruppin,et al.  Multiple knockout analysis of genetic robustness in the yeast metabolic network , 2006, Nature Genetics.

[144]  Johann Gasteiger,et al.  Chemoinformatics: a new field with a long tradition , 2006, Analytical and bioanalytical chemistry.

[145]  S. Panke,et al.  Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data , 2006, Molecular systems biology.

[146]  Zeng Shaoqun,et al.  FluxExplorer: A general platform for modeling and analyses of metabolic networks based on stoichiometry , 2006 .

[147]  H. Mori,et al.  Metabolomics approach for enzyme discovery. , 2006, Journal of proteome research.

[148]  Stefan Schuster,et al.  Systems biology Metatool 5.0: fast and flexible elementary modes analysis , 2006 .

[149]  Bernhard O. Palsson,et al.  Identification of Genome-Scale Metabolic Network Models Using Experimentally Measured Flux Profiles , 2006, PLoS Comput. Biol..

[150]  Calin Belta,et al.  Systematic analysis of conservation relations in Escherichia coli genome-scale metabolic network reveals novel growth media. , 2006, Biophysical journal.

[151]  Johannes Tramper,et al.  Modeling Neisseria meningitidis metabolism: from genome to metabolic fluxes , 2007, Genome Biology.

[152]  C. Maranas,et al.  An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. , 2006, Metabolic engineering.

[153]  Adam M. Feist,et al.  Modeling methanogenesis with a genome‐scale metabolic reconstruction of Methanosarcina barkeri , 2006 .

[154]  Nobuyoshi Ishii,et al.  Distinguishing enzymes using metabolome data for the hybrid dynamic/static method , 2007, Theoretical Biology and Medical Modelling.

[155]  B. Palsson Systems Biology: Properties of Reconstructed Networks , 2006 .

[156]  Jacky L. Snoep,et al.  BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems , 2005, Nucleic Acids Res..

[157]  Andrew R. Joyce,et al.  Experimental and Computational Assessment of Conditionally Essential Genes in Escherichia coli , 2006, Journal of bacteriology.

[158]  Rainer Breitling,et al.  Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data , 2006, Metabolomics.

[159]  M. Inui,et al.  High-Throughput Transposon Mutagenesis of Corynebacterium glutamicum and Construction of a Single-Gene Disruptant Mutant Library , 2006, Applied and Environmental Microbiology.

[160]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[161]  Markus J. Herrgård,et al.  Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. , 2006, Genome research.

[162]  D. Stahl,et al.  Metabolic modeling of a mutualistic microbial community , 2007, Molecular systems biology.

[163]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[164]  M. Kanehisa,et al.  Observing metabolic functions at the genome scale , 2007, Genome Biology.

[165]  Peter D. Karp,et al.  Multidimensional annotation of the Escherichia coli K-12 genome , 2007, Nucleic acids research.

[166]  Sang Yup Lee,et al.  Metabolite essentiality elucidates robustness of Escherichia coli metabolism , 2007, Proceedings of the National Academy of Sciences.

[167]  B. Hammock,et al.  Mass spectrometry-based metabolomics. , 2007, Mass spectrometry reviews.

[168]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[169]  Nicola Zamboni,et al.  anNET: a tool for network-embedded thermodynamic analysis of quantitative metabolome data , 2008, BMC Bioinformatics.

[170]  Bernhard O. Palsson,et al.  Metabolic Reconstruction and Modeling of Nitrogen Fixation in Rhizobium etli , 2007, PLoS Comput. Biol..

[171]  Christian von Mering,et al.  STRING 7—recent developments in the integration and prediction of protein interactions , 2006, Nucleic Acids Res..

[172]  V. Hatzimanikatis,et al.  Thermodynamics-based metabolic flux analysis. , 2007, Biophysical journal.

[173]  S. Klamt,et al.  GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism , 2007, Genome Biology.

[174]  Michel Schneider,et al.  UniProtKB/Swiss-Prot. , 2007, Methods in molecular biology.

[175]  Alfredo Braunstein,et al.  Estimating the size of the solution space of metabolic networks , 2007, BMC Bioinformatics.

[176]  Pablo Meyer,et al.  Applications of fluorescence microscopy to single bacterial cells. , 2007, Research in microbiology.

[177]  Calin Belta,et al.  Exploiting the pathway structure of metabolism to reveal high-order epistasis , 2008, BMC Systems Biology.

[178]  Roded Sharan,et al.  Systematic condition-dependent annotation of metabolic genes. , 2007, Genome research.

[179]  B. Palsson,et al.  Genome-scale Reconstruction of Metabolic Network in Bacillus subtilis Based on High-throughput Phenotyping and Gene Essentiality Data* , 2007, Journal of Biological Chemistry.

[180]  U. Sauer,et al.  Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli , 2007, Molecular systems biology.

[181]  Michael Hecker,et al.  Integrated network reconstruction, visualization and analysis using YANAsquare , 2007, BMC Bioinformatics.

[182]  Pei Yee Ho,et al.  Multiple High-Throughput Analyses Monitor the Response of E. coli to Perturbations , 2007, Science.

[183]  Bernhard O. Palsson,et al.  Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets , 2007 .

[184]  Uwe Sauer,et al.  Computational Prediction and Experimental Verification of the Gene Encoding the NAD+/NADP+-Dependent Succinate Semialdehyde Dehydrogenase in Escherichia coli , 2007, Journal of bacteriology.

[185]  G. Stephanopoulos,et al.  Metabolic flux analysis in a nonstationary system: fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol. , 2007, Metabolic engineering.

[186]  R. Sharan,et al.  A genome-scale computational study of the interplay between transcriptional regulation and metabolism , 2007, Molecular systems biology.

[187]  Antje Chang,et al.  BRENDA, AMENDA and FRENDA: the enzyme information system in 2007 , 2007, Nucleic Acids Res..

[188]  Bernhard O. Palsson,et al.  Estimation of the number of extreme pathways for metabolic networks , 2007, BMC Bioinformatics.

[189]  D. Broomhead,et al.  Something from nothing − bridging the gap between constraint‐based and kinetic modelling , 2007, The FEBS journal.

[190]  S. Lee,et al.  Systems metabolic engineering of Escherichia coli for L-threonine production , 2007, Molecular systems biology.

[191]  Madhukar S. Dasika,et al.  Metabolic flux elucidation for large-scale models using 13C labeled isotopes. , 2007, Metabolic engineering.

[192]  Claudine Médigue,et al.  Annotation, comparison and databases for hundreds of bacterial genomes. , 2007, Research in microbiology.

[193]  G. Stephanopoulos,et al.  Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. , 2007, Metabolic engineering.

[194]  Nan Xiao,et al.  Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli , 2008, Bioinform..

[195]  Jörg Stelling,et al.  Large-scale computation of elementary flux modes with bit pattern trees , 2008, Bioinform..

[196]  Michael Hucka,et al.  LibSBML: an API Library for SBML , 2008, Bioinform..

[197]  B. Rittmann Opportunities for renewable bioenergy using microorganisms. , 2008, Biotechnology and bioengineering.

[198]  Yoshihiro Yamanishi,et al.  KEGG for linking genomes to life and the environment , 2007, Nucleic Acids Res..

[199]  B. Palsson,et al.  Formulating genome-scale kinetic models in the post-genome era , 2008, Molecular systems biology.

[200]  Bernhard O. Palsson,et al.  Context-Specific Metabolic Networks Are Consistent with Experiments , 2008, PLoS Comput. Biol..

[201]  Vincent Schächter,et al.  A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1 , 2008, Molecular systems biology.

[202]  Jason A. Papin,et al.  * Corresponding authors , 2006 .

[203]  Feng Gao,et al.  Microbial biodegradation of polyaromatic hydrocarbons. , 2008, FEMS microbiology reviews.

[204]  Isaac Meilijson,et al.  Can single knockouts accurately single out gene functions? , 2008, BMC Systems Biology.

[205]  D. Fell,et al.  Is maximization of molar yield in metabolic networks favoured by evolution? , 2008, Journal of theoretical biology.

[206]  Erwin P. Gianchandani,et al.  Dynamic Analysis of Integrated Signaling, Metabolic, and Regulatory Networks , 2008, PLoS Comput. Biol..

[207]  Lynda B. M. Ellis,et al.  The University of Minnesota pathway prediction system: predicting metabolic logic , 2008, Nucleic Acids Res..

[208]  Bas Teusink,et al.  Co-Regulation of Metabolic Genes Is Better Explained by Flux Coupling Than by Network Distance , 2008, PLoS Comput. Biol..

[209]  Sang Yup Lee,et al.  Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network , 2008, Applied Microbiology and Biotechnology.

[210]  D. Lovley,et al.  Elucidation of an Alternate Isoleucine Biosynthesis Pathway in Geobacter sulfurreducens , 2008, Journal of bacteriology.

[211]  Adam M. Feist,et al.  The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli , 2008, Nature Biotechnology.

[212]  S. Lee,et al.  Metabolic flux analysis and metabolic engineering of microorganisms. , 2008, Molecular bioSystems.

[213]  P. Kuchel,et al.  Isotopomer subspaces as indicators of metabolic-pathway structure. , 2008, Journal of theoretical biology.

[214]  Andreas Wagner,et al.  The Systems Biology Research Tool: evolvable open-source software , 2008, BMC Systems Biology.

[215]  Bernhard O. Palsson,et al.  A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory , 2008, BMC Systems Biology.

[216]  David A. Fell,et al.  Detection of stoichiometric inconsistencies in biomolecular models , 2008, Bioinform..

[217]  Vincent Schächter,et al.  Iterative reconstruction of a global metabolic model of Acinetobacter baylyi ADP1 using high-throughput growth phenotype and gene essentiality data , 2008, BMC Systems Biology.

[218]  S. Lee,et al.  Application of systems biology for bioprocess development. , 2008, Trends in biotechnology.

[219]  Anat Kreimer,et al.  The evolution of modularity in bacterial metabolic networks , 2008, Proceedings of the National Academy of Sciences.

[220]  Marcel Salanoubat,et al.  New Insights into the Alternative d-Glucarate Degradation Pathway* , 2008, Journal of Biological Chemistry.

[221]  E. Papoutsakis,et al.  Genome‐scale model for Clostridium acetobutylicum: Part I. Metabolic network resolution and analysis , 2008, Biotechnology and bioengineering.

[222]  Antje Chang,et al.  BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009 , 2008, Nucleic Acids Res..

[223]  Rainer Breitling,et al.  What is Systems Biology? , 2010, Front. Physiology.

[224]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.