Towards Large-Scale RFID Positioning: A Low-cost, High-precision Solution Based on Compressive Sensing

RFID-based positioning is emerging as a promising solution for inventory management in places like warehouses and libraries. However, existing solutions either are too sensitive to the environmental noise, or require deploying a large number of reference tags which incur expensive deployment cost and increase the chance of data collisions. This paper presents CSRP, a novel RFID based positioning system, which is highly accurate and robust to environmental noise, but relies on much less reference tags compared with the state-of-the-art. CSRP achieves this by employing an noise-resilient RFID fingerprint scheme and a compressive sensing based algorithm that can recover the target tag's position using a small number of signal measurements. This work provides a set of new analysis, algorithms and heuristics to guide the deployment of reference tags and to optimize the computational overhead. We evaluate CSRP in a deployment site with 270 commercial RFID tags. Experimental results show that CSRP can correctly identify 84.7% of the test items, achieving an accuracy that is comparable to the state-of-the-art, using an order of magnitude less reference tags.

[1]  Anlong Ming,et al.  A Coverage-Enhancing Method for 3D Directional Sensor Networks , 2009, IEEE INFOCOM 2009.

[2]  M. Vossiek,et al.  Inverse SAR approach for localization of moving RFID tags , 2013, 2013 IEEE International Conference on RFID (RFID).

[3]  Lei Yang,et al.  Anchor-free backscatter positioning for RFID tags with high accuracy , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[4]  Yunhao Liu,et al.  Relative Localization of RFID Tags using Spatial-Temporal Phase Profiling , 2015, NSDI.

[5]  Moeness G. Amin,et al.  Multifrequency-based range estimation of RFID Tags , 2009, 2009 IEEE International Conference on RFID.

[6]  Ju Wang,et al.  E-HIPA: An Energy-Efficient Framework for High-Precision Multi-Target-Adaptive Device-Free Localization , 2017, IEEE Transactions on Mobile Computing.

[7]  Yunhao Liu,et al.  OTrack: Order tracking for luggage in mobile RFID systems , 2013, 2013 Proceedings IEEE INFOCOM.

[8]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[9]  Min Chen,et al.  Enhanced Fingerprinting and Trajectory Prediction for IoT Localization in Smart Buildings , 2016, IEEE Transactions on Automation Science and Engineering.

[10]  Dina Katabi,et al.  RF-IDraw: virtual touch screen in the air using RF signals , 2014, S3@MobiCom.

[11]  Longfei Shangguan,et al.  The Design and Implementation of a Mobile RFID Tag Sorting Robot , 2016, MobiSys.

[12]  Lei Yang,et al.  Tagoram: real-time tracking of mobile RFID tags to high precision using COTS devices , 2014, MobiCom.

[13]  Lei Yang,et al.  Frogeye: Perception of the slightest tag motion , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[14]  Xiaoying Gan,et al.  The collocation of measurement points in large open indoor environment , 2015, 2015 IEEE Conference on Computer Communications (INFOCOM).

[15]  Xiuwen Liu,et al.  Accurate localization of RFID tags using phase difference , 2010, 2010 IEEE International Conference on RFID (IEEE RFID 2010).

[16]  Jean-Luc Starck,et al.  Sparse Solution of Underdetermined Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit , 2012, IEEE Transactions on Information Theory.

[17]  Jue Wang,et al.  Dude, where's my card?: RFID positioning that works with multipath and non-line of sight , 2013, SIGCOMM.

[18]  G.D. Durgin,et al.  Complete Link Budgets for Backscatter-Radio and RFID Systems , 2009, IEEE Antennas and Propagation Magazine.

[19]  Karthikeyan Sundaresan,et al.  RIO: A Pervasive RFID-based Touch Gesture Interface , 2017, MobiCom.

[20]  Dacheng Tao,et al.  Bregman Divergence-Based Regularization for Transfer Subspace Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[21]  Markus Cremer,et al.  New measurement results for the localization of UHF RFID transponders using an Angle of Arrival (AoA) approach , 2011, 2011 IEEE International Conference on RFID.

[22]  Yunhao Liu,et al.  VIRE: Active RFID-based Localization Using Virtual Reference Elimination , 2007, 2007 International Conference on Parallel Processing (ICPP 2007).

[23]  Dina Katabi,et al.  RF-IDraw: virtual touch screen in the air using RF signals , 2014, S3 '14.

[24]  Ross A. Knepper,et al.  RF-compass: robot object manipulation using RFIDs , 2013, MobiCom.

[25]  Gaetano Borriello,et al.  SpotON: An Indoor 3D Location Sensing Technology Based on RF Signal Strength , 2000 .

[26]  M. Vossiek,et al.  A novel method for UHF RFID tag tracking based on acceleration data , 2012, 2012 IEEE International Conference on RFID (RFID).

[27]  Martin Vossiek,et al.  Holographic localization of passive UHF RFID transponders , 2011, 2011 IEEE International Conference on RFID.

[28]  Ahmed Wasif Reza,et al.  Investigation of Indoor Location Sensing via RFID Reader Network Utilizing Grid Covering Algorithm , 2009, Wirel. Pers. Commun..

[29]  Huadong Ma,et al.  On Coverage Problems of Directional Sensor Networks , 2005, MSN.

[30]  K. V. S. Rao,et al.  Phase based spatial identification of UHF RFID tags , 2010, 2010 IEEE International Conference on RFID (IEEE RFID 2010).

[31]  Philip Chan,et al.  Toward accurate dynamic time warping in linear time and space , 2007, Intell. Data Anal..

[32]  Yunhao Liu,et al.  LANDMARC: Indoor Location Sensing Using Active RFID , 2004, Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003)..

[33]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[34]  Shuicheng Yan,et al.  Graph embedding: a general framework for dimensionality reduction , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).