Imaging Spectroscopy for Soil Mapping and Monitoring

There is a renewed awareness of the finite nature of the world’s soil resources, growing concern about soil security and significant uncertainties about the carrying capacity of the planet. Regular assessments of soil conditions from local through to global scales are requested, and there is a clear demand for accurate, up-to-date and spatially referenced soil information by the modelling scientific community, farmers and land users, and policy- and decision-makers. Soil and imaging spectroscopy, based on visible–near-infrared and shortwave infrared (400–2500 nm) spectral reflectance, has been shown to be a proven method for the quantitative prediction of key soil surface properties. With the upcoming launch of the next generation of hyperspectral satellite sensors in the next years, a high potential to meet the demand for global soil mapping and monitoring is appearing. In this paper, we briefly review the basic concepts of soil spectroscopy with a special attention to the effects of soil roughness on reflectance and then provide a review of state of the art, achievements and perspectives in soil mapping and monitoring based on imaging spectroscopy from air- and spaceborne sensors. Selected application cases are presented for the modelling of soil organic carbon, mineralogical composition, topsoil water content and characterization of soil crust, soil erosion and soil degradation stages based on airborne and simulated spaceborne imaging spectroscopy data. Further, current challenges, gaps and new directions toward enhanced soil properties modelling are presented. Overall, this paper highlights the potential and limitations of multiscale imaging spectroscopy nowadays for soil mapping and monitoring, and capabilities and requirements of upcoming spaceborne sensors as support for a more informed and sustainable use of our world’s soil resources.

[1]  Edward J. Milton,et al.  Ground radiometry and airborne multispectral survey of bare soils , 1987 .

[2]  Eyal Ben-Dor,et al.  Application in Analysis of Soils , 2015 .

[3]  José Alexandre Melo Demattê,et al.  Visible–NIR reflectance: a new approach on soil evaluation , 2004 .

[4]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[5]  WangZ.,et al.  Effect of soil surface roughness and scene components on soil surface bidirectional reflectance factor , 2012 .

[6]  Hervas De Diego Francisco,et al.  The State of Soil in Europe : A contribution of the JRC to the European Environment Agency’s Environment State and Outlook Report— SOER 2010 , 2012 .

[7]  Bernard Tychon,et al.  Soil organic carbon assessment by field and airborne spectrometry in bare croplands: accounting for soil surface roughness , 2014 .

[8]  K. Sudduth,et al.  Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor , 2001 .

[9]  Eyal Ben-Dor,et al.  Internal soil standard method for the Brazilian soil spectral library: Performance and proximate analysis , 2018 .

[10]  Antonio J. Plaza,et al.  Characterization of Soil Erosion Indicators Using Hyperspectral Data From a Mediterranean Rainfed Cultivated Region , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[11]  F. Castaldi,et al.  Estimation of soil organic carbon in arable soil in Belgium and Luxembourg with the LUCAS topsoil database , 2018 .

[12]  J. Chandler,et al.  Applying close range digital photogrammetry in soil erosion studies , 2010 .

[13]  Philippe C. Baveye,et al.  Accounting for surface roughness effects in the near-infrared reflectance sensing of soils , 2009 .

[14]  J. Hill,et al.  A new approach for mapping of Biological Soil Crusts in semidesert areas with hyperspectral imagery , 2008 .

[15]  Sabine Chabrillat,et al.  Use of hyperspectral images in the identification and mapping of expansive clay soils and the role of spatial resolution , 2002 .

[16]  John E. Gilley,et al.  Random Roughness Assessment by the Pin and Chain Method , 1995 .

[17]  Eyal Ben-Dor,et al.  Characterization of soil’s structural crust by spectral reflectance in the SWIR region (1.2–2.5 μm) , 2001 .

[18]  K. Coulson,et al.  The Spectral Reflectance of Natural Surfaces , 1971 .

[19]  Sabine Grunwald,et al.  Digital Soil Mapping and Modeling at Continental Scales: Finding Solutions for Global Issues , 2011 .

[20]  Jerzy Cierniewski,et al.  Furrow Microrelief Influence on the Directional Hyperspectral Reflectance of Soil at Various Illumination and Observation Conditions , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Mogens Humlekrog Greve,et al.  Development of a Danish national vis—NIR soil spectral library for SOC determination , 2012 .

[22]  E. Muller,et al.  Modeling soil moisture-reflectance , 2001 .

[23]  K R Piech INTERPRETATION OF SOILS , 1974 .

[24]  Mohammadmehdi Saberioon,et al.  Comparing different data preprocessing methods for monitoring soil heavy metals based on soil spectral features. , 2016 .

[25]  Viacheslav I. Adamchuk,et al.  A global spectral library to characterize the world’s soil , 2016 .

[26]  Franco Previtali,et al.  Pedoenvironments of the Mediterranean Countries: Resources and Threats , 2014 .

[27]  T. Stein International Geoscience And Remote Sensing Symposium , 1992, [Proceedings] IGARSS '92 International Geoscience and Remote Sensing Symposium.

[28]  H. Velthuizen,et al.  Harmonized World Soil Database (version 1.2) , 2008 .

[29]  Panos Panagos,et al.  The new assessment of soil loss by water erosion in Europe , 2015 .

[30]  B. Hapke Bidirectional reflectance spectroscopy , 1984 .

[31]  R. Barneveld,et al.  Soil surface roughness: comparing old and new measuring methods and application in a soil erosion model , 2014 .

[32]  Luca Montanarella,et al.  Prediction of Soil Organic Carbon at the European Scale by Visible and Near InfraRed Reflectance Spectroscopy , 2013, PloS one.

[33]  F. Baret,et al.  MARMIT: A multilayer radiative transfer model of soil reflectance to estimate surface soil moisture content in the solar domain (400–2500 nm) , 2018, Remote Sensing of Environment.

[34]  Patrick Hostert,et al.  Simulation of Multitemporal and Hyperspectral Vegetation Canopy Bidirectional Reflectance Using Detailed Virtual 3-D Canopy Models , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[35]  Richard K. Moore,et al.  Microwave Remote Sensing, Active and Passive , 1982 .

[36]  E. Ben-Dor The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400-2500 nm) during a controlled decomposition process , 1997 .

[37]  J. Demattê,et al.  Spectral Reflectance Methodology in Comparison to Traditional Soil Analysis , 2006 .

[38]  Xavier Briottet,et al.  Estimation of Soil Moisture Content from the Spectral Reflectance of Bare Soils in the 0.4–2.5 μm Domain , 2015, Sensors.

[39]  K. Anderson,et al.  Evaluating the influence of surface soil moisture and soil surface roughness on optical directional reflectance factors , 2014 .

[40]  A. Karnieli,et al.  Mapping of several soil properties using DAIS-7915 hyperspectral scanner data - a case study over clayey soils in Israel , 2002 .

[41]  Y. Cantón,et al.  Evaluation of the different spectral indices to map biocrust using spectral information , 2014 .

[42]  W. S. Lee,et al.  Effects of soil moisture content on absorbance spectra of sandy soils in sensing phosphorus concentrations using UV-VIS-NIR spectroscopy , 2006 .

[43]  E. Ben-Dor,et al.  Characterization of Soil Properties Using Reflectance Spectroscopy , 2018, Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation.

[44]  D. Courault,et al.  Bidirectional reflectance of bare soil surfaces in the visible and near‐infrared range , 1993 .

[45]  Derek Rogge,et al.  Building an exposed soil composite processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–2014) , 2018 .

[46]  Eyal Ben-Dor,et al.  Near-Infrared Analysis as a Rapid Method to Simultaneously Evaluate Several Soil Properties , 1995 .

[47]  G. Eshel,et al.  Spectral Reflectance Properties of Crusted Soils under Solar Illumination , 2004 .

[48]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[49]  E. Ben-Dor,et al.  NEAR INFRARED ANALYSIS (NIRA) AS A METHOD TO SIMULTANEOUSLY EVALUATE SPECTRAL FEATURELESS CONSTITUENTS IN SOILS , 1995 .

[50]  Arwyn Jones,et al.  The LUCAS topsoil database and derived information on the regional variability of cropland topsoil properties in the European Union , 2013, Environmental Monitoring and Assessment.

[51]  P. Lagacherie,et al.  Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements , 2008 .

[52]  B. Wesemael,et al.  Detecting and quantifying field-related spatial variation of soil organic carbon using mixed-effect models and airborne imagery , 2015 .

[53]  Sabine Chabrillat,et al.  Imaging Spectrometry for Soil Applications , 2008 .

[54]  R. J. Hanks,et al.  REFLECTION OF RADIANT ENERGY FROM SOILS , 1965 .

[55]  B. Minasny,et al.  Removing the effect of soil moisture from NIR diffuse reflectance spectra for the prediction of soil organic carbon , 2011 .

[56]  Miguel Cooper,et al.  Soil roughness evolution in different tillage systems under simulated rainfall using a semivariogram-based index , 2012 .

[57]  R. Lal Restoring Soil Quality to Mitigate Soil Degradation , 2015 .

[58]  E. Ben-Dor,et al.  The Spectral Reflectance Properties of Soil Structural Crusts in the 1.2‐ to 2.5‐μm Spectral Region , 2003 .

[59]  Thomas Cudahy,et al.  Applicability of the Thermal Infrared Spectral Region for the Prediction of Soil Properties Across Semi-Arid Agricultural Landscapes , 2012, Remote. Sens..

[60]  Patrick Hostert,et al.  Surface soil moisture quantification and validation based on hyperspectral data and field measurements , 2008 .

[61]  M. Agassi,et al.  Effect of Electrolyte Concentration and Soil Sodicity on Infiltration Rate and Crust Formation , 1981 .

[62]  Jerzy Cierniewski,et al.  A model for soil surface roughness influence on the spectral response of bare soils in the visible and near-infrared range , 1987 .

[63]  E. R. Stoner,et al.  Characteristic variations in reflectance of surface soils , 1981 .

[64]  K. Kriebel,et al.  On the variability of the reflected radiation field due to differing distributions of the irradiation , 1975 .

[65]  B. Wesemael,et al.  Discriminating soil crust type, development stage and degree of disturbance in semiarid environments from their spectral characteristics , 2012 .

[66]  Naftaly Goldshleger,et al.  Monitoring of agricultural soil degradation by remote-sensing methods: a review , 2013 .

[67]  U. Schmidhalter,et al.  High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures , 2006 .

[68]  H. Kaufmann,et al.  Surface soil moisture quantification models from reflectance data under field conditions , 2008 .

[69]  Jerzy Cierniewski,et al.  Satellite Observation of Bare Soils for Their Average Diurnal Albedo Approximation , 2012, SENSORNETS.

[70]  R. V. Rossel,et al.  Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties , 2006 .

[71]  Nikolaus J. Kuhn,et al.  Modeling fine‐scale soil surface structure using geostatistics , 2013 .

[72]  J. Hill,et al.  Using Imaging Spectroscopy to study soil properties , 2009 .

[73]  Eyal Ben-Dor,et al.  Spectral properties and hydraulic conductance of soil crusts formed by raindrop impact , 2002 .

[74]  Mark A. Folkman,et al.  EO-1/Hyperion hyperspectral imager design, development, characterization, and calibration , 2001, SPIE Asia-Pacific Remote Sensing.

[75]  Stefano Pignatti,et al.  Reducing the Influence of Soil Moisture on the Estimation of Clay from Hyperspectral Data: A Case Study Using Simulated PRISMA Data , 2015, Remote. Sens..

[76]  Rocchina Guarini,et al.  Prisma: The Italian Hyperspectral Mission , 2018, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.

[77]  C. Pieters,et al.  Infrared Spectroscopic Analyses on the Nature of Water in Montmorillonite , 1994 .

[78]  E. R. Stoner,et al.  REFLECTANCE PROPERTIES OF SOILS , 1986 .

[79]  Hermann Kaufmann,et al.  Spatially Explicit Estimation of Clay and Organic Carbon Content in Agricultural Soils Using Multi-Annual Imaging Spectroscopy Data , 2012 .

[80]  Philippe Lagacherie,et al.  Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements , 2008 .

[81]  Eyal Ben-Dor,et al.  Supervised Vicarious Calibration (SVC) of Multi-Source Hyperspectral Remote-Sensing Data , 2015, Remote. Sens..

[82]  Budiman Minasny,et al.  A conditioned Latin hypercube method for sampling in the presence of ancillary information , 2006, Comput. Geosci..

[83]  Jerzy Cierniewski,et al.  Evaluation of the Effects of Surface Roughness on the Relationship Between Soil BRF Data and Broadband Albedo , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[84]  P. Lagacherie,et al.  Evaluating the sensitivity of clay content prediction to atmospheric effects and degradation of image spatial resolution using Hyperspectral VNIR/SWIR imagery , 2015 .

[85]  Nikolaos L. Tsakiridis,et al.  Predicting soil properties for sustainable agriculture using vis-NIR spectroscopy: a case study in northern Greece , 2017 .

[86]  D. Lobell,et al.  Moisture effects on soil reflectance , 2002 .

[87]  Sabine Chabrillat,et al.  Soil Organic Carbon Estimation in Croplands by Hyperspectral Remote APEX Data Using the LUCAS Topsoil Database , 2018, Remote. Sens..

[88]  Wim Cornelis,et al.  Quantification of Soil Surface Roughness Evolution under Simulated Rainfall , 2013 .

[89]  M. Agassi,et al.  Effect of raindrop impact energy and water salinity on infiltration rates of sodic soils , 1985 .

[90]  D. Rieke-Zapp,et al.  Assessment of soil surface roughness statistics for microwave remote sensing applications using a simple photogrammetric acquisition system , 2012 .

[91]  T. Jarmer,et al.  Linking spatial patterns of soil organic carbon to topography — A case study from south-eastern Spain , 2011 .

[92]  D. R. Fatland Cover SAR interferogram of Bagley Ice Field , 1997 .

[93]  Sabine Chabrillat,et al.  Optical Remote Sensing for Soil Mapping and Monitoring , 2017 .

[94]  Michael E. Schaepman,et al.  Creating Multi-Temporal Composites of Airborne Imaging Spectroscopy Data in Support of Digital Soil Mapping , 2016, Remote. Sens..

[95]  J. Hill Mapping Complex Patterns of Erosion and Stability in Dry Mediterranean Ecosystems , 2000 .

[96]  Eyal Ben-Dor,et al.  An automated procedure for reducing atmospheric features and emphasizing surface emissivity in hyperspectral longwave infrared (LWIR) images , 2017 .

[97]  E. Ben-Dor,et al.  Soil reflectance as a generic tool for assessing infiltration rate induced by structural crust for heterogeneous soils , 2009 .

[98]  Jens Nieke,et al.  Copernicus Hyperspectral Imaging Mission for the Environment (Chime) , 2021, 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS.

[99]  Panagos Panagiotis,et al.  Soil threats in Europe , 2016 .

[100]  Michael C. Dorf,et al.  Why some things are darker when wet. , 1988, Applied optics.

[101]  Patrick Hostert,et al.  The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation , 2015, Remote. Sens..

[102]  Nikolaus J. Kuhn,et al.  Reflectance anisotropy for measuring soil surface roughness of multiple soil types , 2012 .

[103]  Joel Michelin,et al.  Soil surface roughness measurement: A new fully automatic photogrammetric approach applied to agricultural bare fields , 2017, Comput. Electron. Agric..

[104]  Rattan Lal,et al.  Land degradation: An overview , 2019, Response to Land Degradation.

[105]  G. Taylor,et al.  Image-derived spectral endmembers as indicators of salinisation , 2003 .

[106]  Eyal Ben-Dor,et al.  Modelling Diverse Soil Attributes with Visible to Longwave Infrared Spectroscopy Using PLSR Employed by an Automatic Modelling Engine , 2017, Remote. Sens..

[107]  Zhou Shi,et al.  Accounting for the effects of water and the environment on proximally sensed vis–NIR soil spectra and their calibrations , 2015 .

[108]  I. Herrmann,et al.  Approximating the average daily surface albedo with respect to soil roughness and latitude , 2013 .

[109]  Sabine Chabrillat,et al.  Prediction of Common Surface Soil Properties Based on Vis-NIR Airborne and Simulated EnMAP Imaging Spectroscopy Data: Prediction Accuracy and Influence of Spatial Resolution , 2016, Remote. Sens..

[110]  L. Hoffmann,et al.  Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy , 2010 .

[111]  Thomas Cudahy,et al.  Advantages using the thermal infrared (TIR) to detect and quantify semi-arid soil properties , 2015 .

[112]  Sabine Chabrillat,et al.  Prediction of common surface soil properties using airborne and simulated EnMAP hyperspectral images: Impact of soil algorithm and sensor characteristic , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[113]  Caio T. Fongaro,et al.  Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images , 2018, Remote Sensing of Environment.

[114]  Philippe Lagacherie,et al.  Applying blind source separation on hyperspectral data for clay content estimation over partially vegetated surfaces , 2011 .

[115]  Xingfa Gu,et al.  Evaluation of methods for soil surface moisture estimation from reflectance data , 2003 .

[116]  A. Brook,et al.  PRACTICAL EXAMPLE OF THE SUPERVISED VICARIOUS CALIBRATION ( SVC ) METHOD – VALCALHYP AIRBORNE HYPERSPECTRAL CAMPAIGN UNDER EUFAR , 2014 .

[117]  Lammert Kooistra,et al.  Soil Organic Carbon mapping of partially vegetated agricultural fields with imaging spectroscopy , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[118]  Arnon Karnieli,et al.  A hemispherical-directional reflectance model as a tool for understanding image distinctions between cultivated and uncultivated bare surfaces , 2004 .

[119]  Patrick Hostert,et al.  The EnMAP-Box - A Toolbox and Application Programming Interface for EnMAP Data Processing , 2015, Remote. Sens..

[120]  Eyal Ben-Dor,et al.  Reflectance Spectroscopy as a Tool for Monitoring Contaminated Soils , 2011 .

[121]  Robert O. Green,et al.  Global VSWIR Imaging Spectroscopy and the 2017 Decadal Survey , 2018, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.

[122]  R. Henry,et al.  Simultaneous Determination of Moisture, Organic Carbon, and Total Nitrogen by Near Infrared Reflectance Spectrophotometry , 1986 .

[123]  Dudley A. Williams,et al.  Optical properties of water in the near infrared. , 1974 .

[124]  W. R. Bandeen,et al.  Anisotropic reflectance characteristics of natural Earth surfaces. , 1970, Applied optics.

[125]  Luis Guanter,et al.  From HYSOMA to ENSOMAP – A new open source tool for quantitative soil properties mapping based on hyperspectral imagery from airborne to spaceborne applications , 2016 .

[126]  S. Ustin,et al.  Predicting water content using Gaussian model on soil spectra , 2004 .

[127]  E. R. Stoner,et al.  Measuring Radiance Characteristics of Soil with a Field Spectroradiometer 1 , 1971 .

[128]  Kristof Van Oost,et al.  UAS-based soil carbon mapping using VIS-NIR (480–1000nm) multi-spectral imaging: Potential and limitations , 2016 .

[129]  P. Sellers Remote sensing of the land surface for studies of global change , 1993 .

[130]  Steven M. De Jong,et al.  Timing of erosion and satellite data: A multi-resolution approach to soil erosion risk mapping , 2008, Int. J. Appl. Earth Obs. Geoinformation.

[131]  I. Herrmann,et al.  Soil surface illumination at micro-relief scale and soil BRDF data collected by a hyperspectral camera , 2010 .

[132]  Frédéric Jacob,et al.  Remote sensing of soil surface characteristics from a multiscale classification approach , 2008 .

[133]  Paula Escribano,et al.  Advanced image processing methods as a tool to map and quantify different types of biological soil crust , 2014 .

[134]  Panos Panagos,et al.  Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach , 2014 .

[135]  P. Lagacherie,et al.  Using legacy data for correction of soil surface clay content predicted from VNIR/SWIR hyperspectral airborne images , 2016 .

[136]  J. Townshend,et al.  A modified hapke model for soil bidirectional reflectance , 1996 .

[137]  Kenneth G. Renard,et al.  Soil Erosion: Processes, Prediction, Measurement, and Control , 2002 .

[138]  Michael D. Steven,et al.  High resolution derivative spectra in remote sensing , 1990 .

[139]  M. Shoshany Roughness—Reflectance relationship of bare desert terrain: An empirical study☆ , 1993 .

[140]  M. S. Moran,et al.  Field calibration of reference reflectance panels , 1987 .

[141]  Philippe Lagacherie,et al.  Digital soil mapping across the globe , 2017 .

[142]  Susan L. Ustin,et al.  LIGHT ABSORPTION MODEL FOR WATER CONTENT TO IMPROVE SOIL MINERAL ESTIMATES IN HYPERSPECTRAL IMAGERY , 2005 .

[143]  P. Lagacherie,et al.  Semi-blind source separation for the estimation of the clay content over semi-vegetated areas using VNIR/SWIR hyperspectral airborne data , 2016 .

[144]  Sabine Chabrillat,et al.  Sampling Strategies for Soil Property Mapping Using Multispectral Sentinel-2 and Hyperspectral EnMAP Satellite Data , 2019, Remote. Sens..

[145]  P. Lagacherie,et al.  Using Vis-NIR hyperspectral data to map topsoil properties over bare soils in the Cap Bon region, Tunisia , 2012 .

[146]  Alfred E. Hartemink,et al.  Soils are back on the global agenda , 2008 .

[147]  A. McBratney,et al.  A soil science renaissance , 2008 .

[148]  R. Casa,et al.  Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon , 2016 .

[149]  M. Schaepman,et al.  Minimizing soil moisture variations in multi-temporal airborne imaging spectrometer data for digital soil mapping , 2019, Geoderma.

[150]  R. V. Rossel,et al.  Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study , 2008 .

[151]  Eyal Ben-Dor,et al.  Quantitative mapping of the soil rubification process on sand dunes using an airborne hyperspectral sensor , 2006 .

[152]  Luboš Borůvka,et al.  Building soil spectral library of the Czech soils for quantitative digital soil mapping. , 2018 .

[153]  Akira Iwasaki,et al.  Hisui Status Toward FY2019 Launch , 2018, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.

[154]  Z. Niu,et al.  Prediction of soil properties using laboratory VIS–NIR spectroscopy and Hyperion imagery , 2013 .

[155]  Prasad S. Thenkabail,et al.  Spectral Sensing from Ground to Space in Soil Science: State of the Art, Applications, Potential, and Perspectives , 2018, Remote Sensing Handbook - Three Volume Set.

[156]  Walid Ouerghemmi,et al.  Semi-blind source separation for estimation of clay content over semi-vegetated areas, from vnir/swir hyperspectral airborne data , 2015, 2015 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).

[157]  L. Janik,et al.  Can mid infrared diffuse reflectance analysis replace soil extractions , 1998 .

[158]  F. S. Nakayama,et al.  The Dependence of Bare Soil Albedo on Soil Water Content. , 1975 .

[159]  E. Ben-Dor,et al.  A simple apparatus to measure soil spectral information in the field under stable conditions , 2017 .

[160]  E. Ben-Dor,et al.  SOIL REFLECTANCE AS A TOOL FOR ASSESSING PHYSICAL CRUST ARRANGEMENT OF FOUR TYPICAL SOILS IN ISRAEL , 2004 .

[161]  Mark A. Nearing,et al.  Digital close range photogrammetry for measurement of soil erosion , 2005 .

[162]  S. M. de Jong,et al.  The analysis of spectroscopical data to map soil types and soil crusts of Mediterranean eroded soils , 1992 .

[163]  E. Ben-Dor,et al.  Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils , 2007 .

[164]  Michael E. Schaepman,et al.  Barest Pixel Composite for Agricultural Areas Using Landsat Time Series , 2017, Remote. Sens..

[165]  R. Lal,et al.  Stratification and Storage of Soil Organic Carbon and Nitrogen as Affected by Tillage Practices in the North China Plain , 2015, PloS one.

[166]  Bas van Wesemael,et al.  Soil Organic Carbon Predictions by Airborne Imaging Spectroscopy: Comparing Cross-Validation and Validation , 2012 .

[167]  A. F. H. Goetz,et al.  Monitoring infiltration rates in semiarid soils using airborne hyperspectral technology , 2004 .

[168]  R. Schwarzenbach,et al.  Light penetration in soil and particulate minerals , 2005 .

[169]  L. Ferreira,et al.  Surface roughness effects on soil albedo , 2000 .

[170]  V. Ciarletti,et al.  Estimating soil roughness indices on a ridge-and-furrow surface using stereo photogrammetry , 2007 .

[171]  Yufeng Ge,et al.  VisNIR spectra of dried ground soils predict properties of soils scanned moist and intact , 2014 .

[172]  Thomas Cudahy,et al.  Vegetation corrected continuum depths at 2.20 µm: An approach for hyperspectral sensors , 2009 .

[173]  Changkun Wang,et al.  Predicting Soil Salinity with Vis–NIR Spectra after Removing the Effects of Soil Moisture Using External Parameter Orthogonalization , 2015, PloS one.

[174]  J. Roger,et al.  Analysis of the uncertainties affecting predictions of clay contents from VNIR/SWIR hyperspectral data , 2015 .

[175]  T. F. Eck,et al.  Bidirectional reflectances of selected desert surfaces and their three-parameter soil characterization , 1990 .

[176]  Hermann Kaufmann,et al.  Multitemporal soil pattern analysis with multispectral remote sensing data at the field-scale , 2015, Comput. Electron. Agric..

[177]  R. Green,et al.  An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities , 2015 .

[178]  D. Mcintyre PERMEABILITY MEASUREMENTS OF SOIL CRUSTS FORMED BY RAINDROP IMPACT , 1958 .

[179]  C. Hurburgh,et al.  Near-Infrared Reflectance Spectroscopy–Principal Components Regression Analyses of Soil Properties , 2001 .

[180]  P. Teillet,et al.  Effect of soil surface roughness and scene components on soil surface bidirectional reflectance factor , 2012, Canadian Journal of Soil Science.

[181]  S. Islam,et al.  Estimation of Soil Physical Properties Using Remote Sensing and Artificial Neural Network , 2000 .

[182]  Jean-Michel Roger,et al.  Predictive ability of soil properties to spectral degradation from laboratory Vis-NIR spectroscopy data , 2017 .

[183]  R. V. Rossel,et al.  Visible and near infrared spectroscopy in soil science , 2010 .

[184]  Xianzhang Pan,et al.  Hyper-spectral estimation of wheat biomass after alleviating of soil effects on spectra by non-negative matrix factorization , 2017 .

[185]  Michael E. Schaepman,et al.  Determining iron content in Mediterranean soils in partly vegetated areas, using spectral reflectance and imaging spectroscopy , 2007, Int. J. Appl. Earth Obs. Geoinformation.

[186]  Daniel Schläpfer,et al.  1st EARSEL Workshop on Imaging Spectroscopy , 1998 .

[187]  W. Mauser,et al.  Modelling and model verification of the spectral reflectance of soils under varying moisture conditions , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[188]  P. Lagacherie,et al.  Regional predictions of eight common soil properties and their spatial structures from hyperspectral Vis–NIR data , 2012 .

[189]  J. Hill,et al.  Remote Sensing of Biological Soil Crusts at Different Scales , 2016 .

[190]  Suzelle Barrington,et al.  Shadow analysis: A method for measuring soil surface roughness , 2008 .

[191]  Brett A. Melbourne,et al.  Regional Contingencies in the Relationship between Aboveground Biomass and Litter in the World’s Grasslands , 2013, PloS one.