Spatial regression models over two-dimensional manifolds

We propose a regression model for data spatially distributed over general two-dimensional Riemannian manifolds. This is a generalized additive model with a roughness penalty term involving a differential operator computed over the non-planar domain. By virtue of a semiparametric framework, the model allows inclusion of space-varying covariate information. Estimation can be performed by conformally parameterizing the non-planar domain and then generalizing existing models for penalized spatial regression over planar domains. The conformal coordinates and the estimation problem are both computed with a finite element approach.

[1]  Luca Antiga,et al.  An Integrated Statistical Investigation of Internal Carotid Arteries of Patients Affected by Cerebral Aneurysms , 2012 .

[2]  Ron Kikinis,et al.  Nondistorting flattening maps and the 3-D visualization of colon CT images , 2000, IEEE Transactions on Medical Imaging.

[3]  James O. Ramsay,et al.  Spatial spline regression models , 2013 .

[4]  Moo K. Chung,et al.  Cortical thickness analysis in autism with heat kernel smoothing , 2005, NeuroImage.

[5]  A. Quarteroni Numerical Models for Differential Problems , 2009 .

[6]  Fabio Nobile,et al.  Mixed Finite Elements for Spatial Regression with PDE Penalization , 2014, SIAM/ASA J. Uncertain. Quantification.

[7]  Ayse Pinar Saygin,et al.  Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data , 2006, NeuroImage.

[8]  Mikyoung Jun,et al.  An Approach to Producing Space–Time Covariance Functions on Spheres , 2007, Technometrics.

[9]  Ron Kikinis,et al.  On the Laplace-Beltrami operator and brain surface flattening , 1999, IEEE Transactions on Medical Imaging.

[10]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields; The SPDE approach , 2010 .

[11]  A. Veneziani,et al.  A Case Study in Exploratory Functional Data Analysis: Geometrical Features of the Internal Carotid Artery , 2009 .

[12]  Wolfgang Härdle,et al.  Partially Linear Models , 2000 .

[13]  Larry L. Schumaker,et al.  Fitting scattered data on sphere-like surfaces using spherical splines , 1996 .

[14]  T. Gneiting Strictly and non-strictly positive definite functions on spheres , 2011, 1111.7077.

[15]  Tim Ramsay,et al.  Spline smoothing over difficult regions , 2002 .

[16]  David A. Steinman,et al.  A Framework for Geometric Analysis of Vascular Structures: Application to Cerebral Aneurysms , 2009, IEEE Transactions on Medical Imaging.

[17]  Mikyoung Jun,et al.  Non‐stationary Cross‐Covariance Models for Multivariate Processes on a Globe , 2011 .

[18]  Fabio Nobile,et al.  Blood Flow Velocity Field Estimation Via Spatial Regression With PDE Penalization , 2015 .

[19]  Monica K. Hurdal,et al.  Discrete conformal methods for cortical brain flattening , 2009, NeuroImage.

[20]  L. Sangalli,et al.  PDE penalization for spatial fields smoothing , 2012 .

[21]  Simone Vantini,et al.  Efficient estimation of three‐dimensional curves and their derivatives by free‐knot regression splines, applied to the analysis of inner carotid artery centrelines , 2009 .

[22]  Z. Q. John Lu,et al.  Nonparametric Functional Data Analysis: Theory And Practice , 2007, Technometrics.

[23]  G. Wahba Spline Interpolation and Smoothing on the Sphere , 1981 .

[24]  J. Marron,et al.  Object oriented data analysis: Sets of trees , 2007, 0711.3147.

[25]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[26]  Davide Ambrosi,et al.  BLOOD fLOw VeLOCITY fIeLD eSTIMATION VIA SPATIAL ReGReSSION wITh PDe PeNALIzATION , 2014 .

[27]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[28]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[29]  S. Koopman,et al.  Spline Smoothing Over Difficult Regions , 2008 .

[30]  Katja Bachmeier,et al.  Finite Elements Theory Fast Solvers And Applications In Solid Mechanics , 2017 .

[31]  Hans-Georg Müller,et al.  Functional Data Analysis , 2016 .

[32]  C. K. Shum,et al.  Spherical Splines for Data Interpolation and Fitting , 2006, SIAM J. Sci. Comput..

[33]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[34]  Mark S. Gockenbach,et al.  Understanding and implementing the finite element method , 1987 .

[35]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[36]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .