Silicon microfabrication technologies for biology integrated advance devices and interfaces.

[1]  Hye Jin Kim,et al.  Plasma-based diagnostic and screening platform using a combination of biosensing signals in Alzheimer's disease. , 2023, Biosensors & bioelectronics.

[2]  Jiadao Wang,et al.  High-Throughput and Efficient Intracellular Delivery Method via a Vibration-Assisted Nanoneedle/Microfluidic Composite System. , 2022, ACS nano.

[3]  R. Inguanta,et al.  Simultaneous detection of copper and mercury in water samples using in-situ pH control with electrochemical stripping techniques , 2022, Electrochimica Acta.

[4]  S. Kelley,et al.  PillarX: A Microfluidic Device to Profile Circulating Tumor Cell Clusters Based on Geometry, Deformability, and Epithelial State. , 2022, Small.

[5]  Kuldeep Mahato,et al.  Wearable chemical sensors for biomarker discovery in the omics era , 2022, Nature Reviews Chemistry.

[6]  N. Voelcker,et al.  Wearable microneedle array-based sensor for transdermal monitoring of pH levels in interstitial fluid. , 2022, Biosensors & bioelectronics.

[7]  Molly M. Stevens,et al.  Nanozyme-catalysed CRISPR assay for preamplification-free detection of non-coding RNAs , 2022, Nature Nanotechnology.

[8]  G. Jahng,et al.  Ultrasensitive probeless capacitive biosensor for amyloid beta (Aβ1-42) detection in human plasma using interdigitated electrodes. , 2022, Biosensors & bioelectronics.

[9]  M. Duch,et al.  Polysilicon Microchips Functionalized with Bipyridinium-Based Cyclophanes for a Highly Efficient Cytotoxicity in Cancerous Cells. , 2022, ACS nano.

[10]  Hakho Lee,et al.  Zwitterionic Polymer Electroplating Facilitates the Preparation of Electrode Surfaces for Biosensing , 2021, Advanced materials.

[11]  M. Duch,et al.  Integrating magnetic capabilities to intracellular chips for cell trapping , 2021, Scientific Reports.

[12]  J. Collins,et al.  CRISPR-based diagnostics , 2021, Nature Biomedical Engineering.

[13]  H. Haick,et al.  Fabricating and printing chemiresistors based on monolayer-capped metal nanoparticles , 2021, Nature Protocols.

[14]  T. Komiyama,et al.  Multimodal neural recordings with Neuro-FITM uncover diverse patterns of cortical–hippocampal interactions , 2021, Nature Neuroscience.

[15]  S. Kelley,et al.  Reagentless biomolecular analysis using a molecular pendulum , 2021, Nature Chemistry.

[16]  Kevin A. White,et al.  Quantifying neurotransmitter secretion at single-vesicle resolution using high-density complementary metal–oxide–semiconductor electrode array , 2021, Nature Communications.

[17]  Fan Zhang,et al.  Independent luminescent lifetime and intensity tuning of upconversion nanoparticles by gradient doping for multiplexed encoding. , 2020, Angewandte Chemie.

[18]  Yoo Sang Jeon,et al.  Association between Cell Microenvironment Altered by Gold Nanowire Array and Regulation of Partial Epithelial‐Mesenchymal Transition , 2020, Advanced Functional Materials.

[19]  G. Juska,et al.  Copper‐nanostructure‐modified laser‐scribed electrodes based on graphitic carbon for electrochemical detection of dopamine and glucose , 2020 .

[20]  Kenneth D. Harris,et al.  Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings , 2020, Science.

[21]  Vuslat B Juska,et al.  A Critical Review of Electrochemical Glucose Sensing: Evolution of Biosensor Platforms Based on Advanced Nanosystems , 2020, Sensors.

[22]  S. Kelley,et al.  Detection of SARS-CoV-2 Viral Particles Using Direct, Reagent-Free Electrochemical Sensing , 2020, Journal of the American Chemical Society.

[23]  W. Kim,et al.  Liquid biopsy using extracellular vesicle–derived DNA in lung adenocarcinoma , 2020, Journal of pathology and translational medicine.

[24]  T. Murthy,et al.  Life Sciences Discovery and Technology Highlights , 2020, SLAS Technology.

[25]  M. Reed,et al.  Continuous Label-Free Electronic Discrimination of T Cells by Activation State. , 2020, ACS nano.

[26]  R. Gómez-Martínez,et al.  Tracking intracellular forces and mechanical property changes in mouse one-cell embryo development , 2020, Nature Materials.

[27]  S. Kelley,et al.  Nanostructured Architectures Promote the Mesenchymal-Epithelial Transition for Invasive Cells. , 2020, ACS nano.

[28]  M. Stevens,et al.  Size-Tunable Nanoneedle Arrays for Influencing Stem Cell Morphology, Gene Expression, and Nuclear Membrane Curvature , 2020, ACS nano.

[29]  Yanfang Wu,et al.  Patterned Molecular Films of Alkanethiol and PLL-PEG on Gold-Silicate Interfaces: How to Add Functionalities While Retaining Effective Antifouling. , 2020, Langmuir : the ACS journal of surfaces and colloids.

[30]  Nidhi Chauhan,et al.  Recent advancement in nanosensors for neurotransmitters detection: Present and future perspective , 2020 .

[31]  Nicolas H. Voelcker,et al.  Engineered nano-bio interfaces for intracellular delivery and sampling: Applications, agency and artefacts , 2020 .

[32]  Qinghui Jin,et al.  Batch microfabrication of highly integrated silicon-based electrochemical sensor and performance evaluation via nitrite water contaminant determination , 2020 .

[33]  S. Kelley,et al.  High-Performance Nucleic Acid Sensors for Liquid Biopsy Applications. , 2019, Angewandte Chemie.

[34]  M. Stevens,et al.  High‐Aspect‐Ratio Nanostructured Surfaces as Biological Metamaterials , 2020, Advanced materials.

[35]  Zhaoping Li,et al.  A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat , 2019, Nature Biotechnology.

[36]  Donald E. Ingber,et al.  An antifouling coating that enables affinity-based electrochemical biosensing in complex biological fluids , 2019, Nature Nanotechnology.

[37]  Duo Ma,et al.  A Multiplexed, Electrochemical Interface for Gene Circuit-Based Sensors , 2019, Nature Chemistry.

[38]  N. Savage The search for secrets of the human brain , 2019, Nature.

[39]  S. Kelley,et al.  Peptide-Functionalized Nanostructured Microarchitectures Enable Rapid Mechanotransductive Differentiation. , 2019, ACS applied materials & interfaces.

[40]  Il-Joo Cho,et al.  Multifunctional multi-shank neural probe for investigating and modulating long-range neural circuits in vivo , 2019, Nature Communications.

[41]  R. Compton,et al.  Band electrodes in sensing applications: response characteristics and band fabrication methods. , 2019, ACS sensors.

[42]  Vuslat B Juska,et al.  Cu Nanodendrite Foams on Integrated Band Array Electrodes for the Nonenzymatic Detection of Glucose , 2019, ACS Applied Nano Materials.

[43]  Shengwei Xu,et al.  Microelectrode Arrays Modified with Nanocomposites for Monitoring Dopamine and Spike Firings Under Deep Brain Stimulation in Rat Models of Parkinson's Disease. , 2019, ACS sensors.

[44]  Subash C B Gopinath,et al.  Gold interdigitated triple-microelectrodes for label-free prognosticative aptasensing of prostate cancer biomarker in serum. , 2019, Biosensors & bioelectronics.

[45]  D. Go,et al.  Extracellular vesicle microRNA quantification from plasma using an integrated microfluidic device , 2019, Communications Biology.

[46]  R. Compton,et al.  Electrochemical measurement of the size of microband electrodes: A theoretical study , 2019, Journal of Electroanalytical Chemistry.

[47]  Guosong Hong,et al.  Novel electrode technologies for neural recordings , 2019, Nature Reviews Neuroscience.

[48]  M. Pemble,et al.  A highly sensitive glucose biosensor based on a micro disk array electrode design modified with carbon quantum dots and gold nanoparticles , 2019, Electrochimica Acta.

[49]  Jayoung Kim,et al.  Wearable biosensors for healthcare monitoring , 2019, Nature Biotechnology.

[50]  Xiaodi Zhang,et al.  Self‐Powered Intracellular Drug Delivery by a Biomechanical Energy‐Driven Triboelectric Nanogenerator , 2019, Advanced materials.

[51]  Karen Twomey,et al.  Fabrication and evaluation of a carbon quantum dot/gold nanoparticle nanohybrid material integrated onto planar micro gold electrodes for potential bioelectrochemical sensing applications , 2019, Electrochimica Acta.

[52]  Valeria Caprettini,et al.  Cells Adhering to 3D Vertical Nanostructures: Cell Membrane Reshaping without Stable Internalization. , 2018, Nano letters.

[53]  Valeria Caprettini,et al.  Cell Membrane Disruption by Vertical Micro-/Nanopillars: Role of Membrane Bending and Traction Forces , 2018, ACS applied materials & interfaces.

[54]  Carine R Nemr,et al.  Curvature-Mediated Surface Accessibility Enables Ultrasensitive Electrochemical Human Methyltransferase Analysis. , 2018, ACS sensors.

[55]  Guangfu Yang,et al.  Graphene Oxide Signal Reporter Based Multifunctional Immunosensing Platform for Amperometric Profiling of Multiple Cytokines in Serum. , 2018, ACS sensors.

[56]  Babak Hassibi,et al.  Multiplexed identification, quantification and genotyping of infectious agents using a semiconductor biochip , 2018, Nature Biotechnology.

[57]  Efstratios Skafidas,et al.  An interdigitated electrode biosensor platform for rapid HLA-B*15:02 genotyping for prevention of drug hypersensitivity. , 2018, Biosensors & bioelectronics.

[58]  Kenneth D Harris,et al.  Challenges and opportunities for large-scale electrophysiology with Neuropixels probes , 2018, Current Opinion in Neurobiology.

[59]  Sung Jae Kim,et al.  Electrochemical detection of methylated DNA on a microfluidic chip with nanoelectrokinetic pre-concentration. , 2018, Biosensors & bioelectronics.

[60]  John A Rogers,et al.  Recent Advances in Materials, Devices, and Systems for Neural Interfaces , 2018, Advanced materials.

[61]  Tatsuo Nakagawa,et al.  Wearable Wireless Tyrosinase Bandage and Microneedle Sensors: Toward Melanoma Screening , 2018, Advanced healthcare materials.

[62]  G. Juckel,et al.  Altered serotonergic and GABAergic neurotransmission in a mice model of obsessive-compulsive disorder , 2018, Behavioural Brain Research.

[63]  Sergey L. Gratiy,et al.  Fully integrated silicon probes for high-density recording of neural activity , 2017, Nature.

[64]  Mi Kyoung Park,et al.  Microfluidic electrochemical multiplex detection of bladder cancer DNA markers , 2017 .

[65]  M. Uda,et al.  Target ssDNA detection of E.coli O157:H7 through electrical based DNA biosensor , 2017 .

[66]  Alberto Salleo,et al.  Revealing the Cell-Material Interface with Nanometer Resolution by Focused Ion Beam/Scanning Electron Microscopy. , 2017, ACS nano.

[67]  Andreas Demosthenous,et al.  Detection of the tau protein in human serum by a sensitive four-electrode electrochemical biosensor. , 2017, Biosensors & bioelectronics.

[68]  Francesca Santoro,et al.  Nanoscale manipulation of membrane curvature for probing endocytosis in live cells. , 2017, Nature nanotechnology.

[69]  Molly M Stevens,et al.  Extracting the contents of living cells , 2017, Science.

[70]  M. Duch,et al.  Highly Anisotropic Suspended Planar‐Array Chips with Multidimensional Sub‐Micrometric Biomolecular Patterns , 2017 .

[71]  Richard G. Compton,et al.  Supported Microwires for Electroanalysis: Sensitive Amperometric Detection of Reduced Glutathione. , 2017, Analytical chemistry.

[72]  Martin Hjort,et al.  Nondestructive nanostraw intracellular sampling for longitudinal cell monitoring , 2017, Proceedings of the National Academy of Sciences.

[73]  B. Luan,et al.  High-Curvature Nanostructuring Enhances Probe Display for Biomolecular Detection. , 2017, Nano letters.

[74]  Polina Anikeeva,et al.  Neural Recording and Modulation Technologies. , 2017, Nature reviews. Materials.

[75]  Mixia Wang,et al.  A silicon based implantable microelectrode array for electrophysiological and dopamine recording from cortex to striatum in the non-human primate brain. , 2016, Biosensors & bioelectronics.

[76]  Md. Azahar Ali,et al.  Microfluidic Immuno-Biochip for Detection of Breast Cancer Biomarkers Using Hierarchical Composite of Porous Graphene and Titanium Dioxide Nanofibers. , 2016, ACS Applied Materials and Interfaces.

[77]  J. Weitz,et al.  Exosomes: novel implications in diagnosis and treatment of gastrointestinal cancer , 2016, Langenbeck's Archives of Surgery.

[78]  Oliver G Schmidt,et al.  High-Performance Three-Dimensional Tubular Nanomembrane Sensor for DNA Detection. , 2016, Nano letters.

[79]  Aaron P. Gerratt,et al.  Intrinsically Stretchable Biphasic (Solid–Liquid) Thin Metal Films , 2016, Advanced materials.

[80]  P. Reynolds,et al.  Enhanced Differentiation of Human Embryonic Stem Cells Toward Definitive Endoderm on Ultrahigh Aspect Ratio Nanopillars , 2016 .

[81]  Shana O Kelley,et al.  Interrogating Circulating Microsomes and Exosomes Using Metal Nanoparticles. , 2016, Small.

[82]  Patricia Vázquez,et al.  Suspended Planar‐Array Chips for Molecular Multiplexing at the Microscale , 2016, Advanced materials.

[83]  G. Buzsáki,et al.  Monolithically Integrated μLEDs on Silicon Neural Probes for High-Resolution Optogenetic Studies in Behaving Animals , 2015, Neuron.

[84]  Rudra Pratap,et al.  Electrolithography- A New and Versatile Process for Nano Patterning , 2015, Scientific Reports.

[85]  J. Collins,et al.  Synthetic biology devices for in vitro and in vivo diagnostics , 2015, Proceedings of the National Academy of Sciences.

[86]  CM Lewis,et al.  Recording of brain activity across spatial scales , 2015, Current Opinion in Neurobiology.

[87]  Bianxiao Cui,et al.  Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells. , 2015, Nature nanotechnology.

[88]  J. Lisman The Challenge of Understanding the Brain: Where We Stand in 2015 , 2015, Neuron.

[89]  Hideyuki Okano,et al.  Brain/MINDS: brain-mapping project in Japan , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[90]  E. Tasciotti,et al.  Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. , 2015, Nature materials.

[91]  Ciro Chiappini,et al.  Biodegradable nanoneedles for localized delivery of nanoparticles in vivo: exploring the biointerface. , 2015, ACS nano.

[92]  Gerhard Gompper,et al.  Interfacing electrogenic cells with 3D nanoelectrodes: position, shape, and size matter. , 2014, ACS nano.

[93]  Patrick S Doyle,et al.  Universal process-inert encoding architecture for polymer microparticles. , 2014, Nature materials.

[94]  D. Ingber,et al.  Tensegrity, cellular biophysics, and the mechanics of living systems , 2014, Reports on progress in physics. Physical Society.

[95]  Daniel F. Hayes,et al.  Sensitive capture of circulating tumour cells by functionalised graphene oxide nanosheets , 2013, Nature nanotechnology.

[96]  E. Kandel,et al.  Neuroscience thinks big (and collaboratively) , 2013, Nature Reviews Neuroscience.

[97]  R. Gómez-Martínez,et al.  Silicon chips detect intracellular pressure changes in living cells. , 2013, Nature nanotechnology.

[98]  Hakho Lee,et al.  Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy , 2012, Nature Medicine.

[99]  Sandeep Kumar Jha,et al.  An integrated PCR microfluidic chip incorporating aseptic electrochemical cell lysis and capillary electrophoresis amperometric DNA detection for rapid and quantitative genetic analysis. , 2012, Lab on a chip.

[100]  B. Cui,et al.  Intracellular Recording of Action Potentials by Nanopillar Electroporation , 2012, Nature nanotechnology.

[101]  Shana O Kelley,et al.  Hierarchical nanotextured microelectrodes overcome the molecular transport barrier to achieve rapid, direct bacterial detection. , 2011, ACS nano.

[102]  Konrad P Kording,et al.  How advances in neural recording affect data analysis , 2011, Nature Neuroscience.

[103]  Howon Lee,et al.  Colour-barcoded magnetic microparticles for multiplexed bioassays. , 2010, Nature materials.

[104]  Konstantinos Misiakos,et al.  Electrochemical biosensor microarray functionalized by means of biomolecule friendly photolithography. , 2010, Biosensors & bioelectronics.

[105]  Daniel V. Pinacho,et al.  Intracellular silicon chips in living cells. , 2010, Small.

[106]  Shana O Kelley,et al.  Programming the detection limits of biosensors through controlled nanostructuring. , 2009, Nature nanotechnology.

[107]  David J. Sherman,et al.  Three-dimensional nanostructured substrates toward efficient capture of circulating tumor cells. , 2009, Angewandte Chemie.

[108]  Rashid O. Kadara,et al.  Why 'the bigger the better' is not always the case when utilising microelectrode arrays: high density vs. low density arrays for the electroanalytical sensing of chromium(VI). , 2009, The Analyst.

[109]  Richard G Compton,et al.  Microelectrode arrays for electrochemistry: approaches to fabrication. , 2009, Small.

[110]  Mehmet Toner,et al.  Multifunctional Encoded Particles for High-Throughput Biomolecule Analysis , 2007, Science.

[111]  H. Möller,et al.  The role of dopamine for the pathophysiology of schizophrenia , 2007, International review of psychiatry.

[112]  G. Whitesides,et al.  New approaches to nanofabrication: molding, printing, and other techniques. , 2005, Chemical reviews.

[113]  D. Arrigan Nanoelectrodes, nanoelectrode arrays and their applications. , 2004, The Analyst.

[114]  D. Ingber Tensegrity I. Cell structure and hierarchical systems biology , 2003, Journal of Cell Science.

[115]  W. Kutner,et al.  Microelectrodes. Definitions, characterization, and applications (Technical report) , 2000 .

[116]  J. Heinze Ultramicroelectrodes in Electrochemistry , 1993 .

[117]  D. Hubel Tungsten Microelectrode for Recording from Single Units. , 1957, Science.

[118]  J. Axelrod Neurotransmitters. , 1974, Scientific American.