Nano-engineered pathways for advanced thermal energy storage systems

[1]  A. Suryan,et al.  Analysis of battery thermal management system for electric vehicles using 1- Tetradecanol phase change material , 2022, Sustainable Energy Technologies and Assessments.

[2]  Shuhai Jia,et al.  Highly efficient pyroelectric generator for waste heat recovery without auxiliary device , 2021 .

[3]  O. Matar,et al.  An experimental study of the thermohydraulic characteristics of flow boiling in horizontal pipes: Linking spatiotemporally resolved and integral measurements , 2021, Applied Thermal Engineering.

[4]  Raid J. Hassiba,et al.  Application of nanofluids for enhanced waste heat recovery: A review , 2021 .

[5]  Dong-jie Wang,et al.  Nanoparticles deposition patterns in evaporating nanofluid droplets on smooth heated hydrophilic substrates: A 2D immersed boundary-lattice Boltzmann simulation , 2021 .

[6]  Matthew W. Jones,et al.  Fossil CO2 emissions in the post-COVID-19 era , 2021, Nature Climate Change.

[7]  Haozhong Huang,et al.  Opportunities and strategies for multigrade waste heat utilization in various industries: A recent review , 2021 .

[8]  Chengzhi Hu,et al.  An investigation on the heat transfer characteristics of nanofluids in flow boiling by molecular dynamics simulations , 2020 .

[9]  Ikramullah,et al.  Entropy optimization and heat transfer modeling for Lorentz forces effect on solidification of NEPCM , 2020 .

[10]  Zixiang Cui,et al.  Research on size dependent integral melting thermodynamic properties of Cu nanoparticles , 2020 .

[11]  G. Su,et al.  A mechanism of heat transfer enhancement or deterioration of nanofluid flow boiling , 2020 .

[12]  A. Majumdar,et al.  Five thermal energy grand challenges for decarbonization , 2020, Nature Energy.

[13]  Chun Yang,et al.  Active control of the freezing process of a ferrofluid droplet with magnetic fields , 2020 .

[14]  M. Ahmadi,et al.  An experimental investigation into the melting of phase change material using Fe3O4 magnetic nanoparticles under magnetic field , 2020, Journal of Thermal Analysis and Calorimetry.

[15]  U. Stritih,et al.  Phase-Change Materials in Hydronic Heating and Cooling Systems: A Literature Review , 2020, Materials.

[16]  F. Selimefendigil,et al.  Phase change process of nanoparticle enhanced PCM in a heat storage including unsteady conduction , 2020 .

[17]  P. Cheng,et al.  Effects of nanoparticles’ wettability on vapor bubble coalescence in saturated pool boiling of nanofluids: A lattice Boltzmann simulation , 2020 .

[18]  N. L. Brun,et al.  Transient freezing of water between two parallel plates: A combined experimental and modelling study , 2020 .

[19]  C. Chao,et al.  Evaporation and wetting behavior of silver-graphene hybrid nanofluid droplet on its porous residue surface for various mixing ratios , 2020 .

[20]  M. Sheikholeslami,et al.  A novel Bayesian optimization for flow condensation enhancement using nanorefrigerant: A combined analytical and experimental study , 2020 .

[21]  Enamul Hoque,et al.  Introduction to nanomaterials and nanomanufacturing for nanosensors , 2020 .

[22]  Trung Nguyen-Thoi,et al.  Numerical study for nanofluid behavior inside a storage finned enclosure involving melting process , 2020 .

[23]  O. Mahian,et al.  Effect of sonication time on the evaporation rate of seawater containing a nanocomposite. , 2020, Ultrasonics sonochemistry.

[24]  T. Nguyen-Thoi,et al.  Simulation of triplex-tube heat storage including nanoparticles, solidification process , 2019 .

[25]  Chengzhi Hu,et al.  Effects of depositional nanoparticle wettability on explosive boiling heat transfer: A molecular dynamics study , 2019 .

[26]  C. Chao,et al.  Experimental Investigation on Silver-Graphene Hybrid Nanofluid Droplet Evaporation and Wetting Characteristics of its Nanostructured Droplet Residue , 2019, Volume 4: Fluid Measurement and Instrumentation; Micro and Nano Fluid Dynamics.

[27]  Jesús Lizana,et al.  Passive cooling through phase change materials in buildings. A critical study of implementation alternatives , 2019, Applied Energy.

[28]  H. Oztop,et al.  Melting of phase change materials in a trapezoidal cavity: Orientation and nanoparticles effects , 2019, Journal of Molecular Liquids.

[29]  T. Kibbey,et al.  The effect of evaporation-induced flow at the pore scale on nanoparticle transport and deposition in drying unsaturated porous media. , 2019, Journal of contaminant hydrology.

[30]  Teuku Meurah Indra Mahlia,et al.  Phase Change Materials (PCM) for Solar Energy Usages and Storage: An Overview , 2019, Energies.

[31]  Xuelai Zhang,et al.  Thermal conductivity modification of n-octanoic acid-myristic acid composite phase change material , 2019, Journal of Molecular Liquids.

[32]  M. A. Ezan,et al.  A heat recovery unit with phase change material for combi‐boilers , 2019, Energy Storage.

[33]  R. Hirmiz,et al.  Performance of heat pump integrated phase change material thermal storage for electric load shifting in building demand side management , 2019, Energy and Buildings.

[34]  Omid Mahian,et al.  Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems , 2019, Journal of Cleaner Production.

[35]  O. T. Olakoyejo,et al.  Thermal Energy Processes in Direct Steam Generation Solar Systems: Boiling, Condensation and Energy Storage , 2019, Front. Energy Res..

[36]  M. Feddaoui,et al.  Computational study of evaporating nanofluids film along a vertical channel by the two-phase model , 2019, International Journal of Mechanical Sciences.

[37]  F. Hagos,et al.  The effect of thermal cyclic variation on the thermophysical property degradation of paraffin as a phase changing energy storage material , 2019, Applied Thermal Engineering.

[38]  Ali J. Chamkha,et al.  Melting of a Nano-enhanced Phase Change Material (NePCM) in partially-filled horizontal elliptical capsules with different aspect ratios , 2018, International Journal of Mechanical Sciences.

[39]  R. Boukherroub,et al.  Evaporation of nanofluid sessile drops: Infrared and acoustic methods to track the dynamic deposition of copper oxide nanoparticles , 2018, International Journal of Heat and Mass Transfer.

[40]  Saeed Zeinali Heris,et al.  Numerical study on the effect of non-uniform magnetic fields on melting and solidification characteristics of NEPCMs in an annulus enclosure , 2018, Energy Conversion and Management.

[41]  Dibakar Rakshit,et al.  Solidification behavior of binary eutectic phase change material in a vertical finned thermal storage system dispersed with graphene nano-plates , 2018, Energy Conversion and Management.

[42]  M. Sheikholeslami,et al.  Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM , 2018, International Journal of Heat and Mass Transfer.

[43]  Nishant Kumar,et al.  Experimental study on pool boiling and Critical Heat Flux enhancement of metal oxides based nanofluid , 2018, International Communications in Heat and Mass Transfer.

[44]  M. Sheikholeslami Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles , 2018, Journal of Molecular Liquids.

[45]  M. Sadoughi,et al.  Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure , 2018, International Journal of Heat and Mass Transfer.

[46]  D. Wen,et al.  Solar evaporation via nanofluids: A comparative study , 2018, Renewable Energy.

[47]  M. Sheikholeslami Numerical modeling of nano enhanced PCM solidification in an enclosure with metallic fin , 2018, Journal of Molecular Liquids.

[48]  Zhiwei Zhu,et al.  Effects of micro-nano bubbles on the nucleation and crystal growth of sucrose and maltodextrin solutions during ultrasound-assisted freezing process , 2018, LWT.

[49]  S. Tassou,et al.  Waste heat recovery technologies and applications , 2018, Thermal Science and Engineering Progress.

[50]  S. Mahmud,et al.  Melting of nano-PCM in an enclosed space: Scale analysis and heatline tracking , 2018 .

[51]  Qun Li,et al.  Molecular dynamics simulation of wetting and evaporation characteristics for sessile nanofluid nanodroplets , 2018 .

[52]  L. Jia,et al.  Experimental investigation on flow condensation of R141b with CuO nanoparticles in a vertical circular tube , 2018 .

[53]  A. Ranjbar,et al.  Effect of nanoparticle dispersion and inclination angle on melting of PCM in a shell and tube heat exchanger , 2017 .

[54]  B. Ghorbani,et al.  Experimental investigation of condensation heat transfer of R600a/POE/CuO nano-refrigerant in flattened tubes , 2017 .

[55]  Saad Tanvir,et al.  Evaporation characteristics of ethanol droplets containing graphite nanoparticles under infrared radiation , 2017 .

[56]  Hamid El Qarnia,et al.  Thermal analysis of nanoparticle-enhanced phase change material solidification in a rectangular latent heat storage unit including natural convection , 2017 .

[57]  N. Etesami,et al.  Improving Thermal Characteristics and Stability of Phase Change Material Containing TiO2 Nanoparticles after Thermal Cycles for Energy Storage , 2017 .

[58]  R. Kumar,et al.  A review on thermophysical properties of nanofluids and heat transfer applications , 2017 .

[59]  O. Manca,et al.  Nano-Phase Change Materials for Electronics Cooling Applications , 2017 .

[60]  P. Cheng,et al.  An experimental investigation on wettability effects of nanoparticles in pool boiling of a nanofluid , 2017 .

[61]  S. Deville,et al.  Interaction of Multiple Particles with a Solidification Front: From Compacted Particle Layer to Particle Trapping. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[62]  H. E. Qarnia,et al.  Transient behavior analysis of the melting of nanoparticle-enhanced phase change material inside a rectangular latent heat storage unit , 2017 .

[63]  Iman Zeynali Famileh,et al.  Effect of nanoparticles on condensation of humid air in vertical channels , 2017 .

[64]  Dogan Ciloglu An Experimental Investigation of Nucleate Pool Boiling Heat Transfer of Nanofluids From a Hemispherical Surface , 2017 .

[65]  Ruey-Hung Chen,et al.  Effects of internal circulation and particle mobility during nanofluid droplet evaporation , 2016 .

[66]  T. Hayat,et al.  Melting heat transfer in the MHD flow of Cu–water nanofluid with viscous dissipation and Joule heating , 2016 .

[67]  Davood Domiri Ganji,et al.  Anisotropic behavior of magnetic nanofluids (MNFs) at filmwise condensation over a vertical plate in presence of a uniform variable-directional magnetic field , 2016 .

[68]  M. Farhadi,et al.  Melting and solidification of PCM enhanced by radial conductive fins and nanoparticles in cylindrical annulus , 2016 .

[69]  Ping-Hei Chen,et al.  Orientation effects of nanoparticle-modified surfaces with interlaced wettability on condensation heat transfer , 2016 .

[70]  Davood Domiri Ganji,et al.  Thermophoresis and Brownian motion effects on heat transfer enhancement at film boiling of nanofluids over a vertical cylinder , 2016 .

[71]  Tofigh Sayahi,et al.  Investigation on the Effect of Type and Size of Nanoparticles and Surfactant on Pool Boiling Heat Transfer of Nanofluids , 2016 .

[72]  Arvind Kumar,et al.  Modeling the Effects of Concentration of Solid Nanoparticles in Liquid Feedstock Injection on High-Velocity Suspension Flame Spray Process , 2016 .

[73]  Shijun Lei,et al.  External electromagnetic field-aided freezing of CMC-modified graphene/water nanofluid , 2016 .

[74]  Xin Lin,et al.  Interfacial undercooling in solidification of colloidal suspensions: analyses with quantitative measurements , 2015, Scientific Reports.

[75]  J. H. Park,et al.  Effects of Brownian motion on freezing of PCM containing nanoparticles , 2016 .

[76]  Qiusheng Liu,et al.  Thermal Characteristics of Phase Change Materials for Waste Heat Recovery System (特集 ISME HARBIN 2014) , 2015 .

[77]  M. Darzi,et al.  Experimental study on heat transfer characteristics of R600a/POE/CuO nano-refrigerant flow condensation , 2015 .

[78]  Liwu Fan,et al.  A similarity solution to unidirectional solidification of nano-enhanced phase change materials (NePCM) considering the mushy region effect , 2015 .

[79]  S. Mahmud,et al.  Convection effect on the melting process of nano-PCM inside porous enclosure , 2015 .

[80]  C. Chao,et al.  Study of enthalpy of evaporation, saturated vapor pressure and evaporation rate of aqueous nanofluids , 2015 .

[81]  Ji Li,et al.  Comparative studies of pool boiling heat transfer with nano-fluids on porous surface , 2015 .

[82]  Liangxing Li,et al.  Numerical investigation on the melting of nanoparticle-enhanced phase change materials (NEPCM) in a bottom-heated rectangular cavity using lattice Boltzmann method , 2015 .

[83]  F. Hormozi,et al.  Nucleate pool boiling heat transfer characteristics of dilute Al2O3–ethyleneglycol nanofluids , 2014 .

[84]  Luisa F. Cabeza,et al.  The use of phase change materials in domestic heat pump and air-conditioning systems for short term storage: A review , 2014 .

[85]  Saeed Zeinali Heris,et al.  Pool boiling heat transfer of CNT/water nanofluids , 2014 .

[86]  R. Saidur,et al.  A comparative review on the specific heat of nanofluids for energy perspective , 2014 .

[87]  Songping Mo,et al.  Improving the supercooling degree of titanium dioxide nanofluids with sodium dodecylsulfate , 2014 .

[88]  R. K. Sharma,et al.  Numerical study of freezing of Cu-water nanofluid in a trapezoidal cavity , 2014 .

[89]  J. Khodadadi,et al.  Experimental and numerical investigation of melting of NePCM inside an annular container under a constant heat flux including the effect of eccentricity , 2013 .

[90]  J. Khodadadi,et al.  One-dimensional Stefan problem formulation for solidification of nanostructure-enhanced phase change materials (NePCM) , 2013 .

[91]  Ching-Jenq Ho,et al.  An experimental study on melting heat transfer of paraffin dispersed with Al2O3 nanoparticles in a vertical enclosure , 2013 .

[92]  Y. Jeong,et al.  The effect of pressure on the critical heat flux in water-based nanofluids containing Al2O3 and Fe3O4 nanoparticles , 2013 .

[93]  M. Moghiman,et al.  Influence of nanoparticles on reducing and enhancing evaporation mass transfer and its efficiency , 2013 .

[94]  HengAn Wu,et al.  Pinning and depinning mechanism of the contact line during evaporation of nano-droplets sessile on textured surfaces , 2013 .

[95]  J. Khodadadi,et al.  Numerical Simulation of the Effect of the Size of Suspensions on the Solidification Process of Nanoparticle-Enhanced Phase Change Materials , 2013 .

[96]  M. K. Rathod,et al.  Thermal stability of phase change materials used in latent heat energy storage systems: A review , 2013 .

[97]  Yuehong Su,et al.  Ground-Source Heat Pumps using Phase Change Materials , 2013 .

[98]  Liwu Fan,et al.  An experimental investigation of enhanced thermal conductivity and expedited unidirectional freezing of cyclohexane-based nanoparticle suspensions utilized as nano-enhanced phase change materials (NePCM) ☆ , 2012 .

[99]  L. Qiao,et al.  Radiation-enhanced evaporation of ethanol fuel containing suspended metal nanoparticles , 2012 .

[100]  K. Kihm,et al.  Hidden cavity formations by nanocrystalline self-assembly on various substrates with different hydrophobicities. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[101]  Maciej Jaworski,et al.  Thermal performance of heat spreader for electronics cooling with incorporated phase change material , 2012 .

[102]  Guoliang Ding,et al.  Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid , 2011 .

[103]  D. Wen,et al.  Boiling heat transfer of nanofluids: The effect of heating surface modification , 2011 .

[104]  Won Joon Chang,et al.  Flow boiling CHF enhancement using Al2O3 nanofluid and an Al2O3 nanoparticle deposited tube , 2011 .

[105]  Xiang-long Luo,et al.  Experimental Study on Solidification Behavior of Carbon Nanotube Nanofluid , 2010 .

[106]  R. Velraj,et al.  Review on free cooling of buildings using phase change materials , 2010 .

[107]  Ho Seon Ahn,et al.  Experimental study of critical heat flux enhancement during forced convective flow boiling of nanofluid on a short heated surface , 2010 .

[108]  S. M. You,et al.  Pool boiling characteristics of low concentration nanofluids , 2010 .

[109]  Jacopo Buongiorno,et al.  Modification of sandblasted plate heaters using nanofluids to enhance pool boiling critical heat flux , 2010 .

[110]  J. Koo,et al.  Forces acting on a single particle in an evaporating sessile droplet on a hydrophilic surface. , 2010, Analytical chemistry.

[111]  J. Tu,et al.  Chapter 8 – Freezing/Solidification , 2010 .

[112]  Patrick E. Phelan,et al.  Pool boiling of nanofluids: Comprehensive review of existing data and limited new data , 2009 .

[113]  P. Marty,et al.  Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism , 2009 .

[114]  Guoliang Ding,et al.  Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube , 2009 .

[115]  William M. Worek,et al.  Nanofluids and critical heat flux, experimental and analytical study , 2009 .

[116]  Somchai Wongwises,et al.  Nucleate pool boiling heat transfer of TiO2–R141b nanofluids , 2009 .

[117]  Arup Kumar Das,et al.  Pool boiling heat transfer characteristics of ZrO2–water nanofluids from a flat surface in a pool , 2008 .

[118]  Zhen-hua Liu,et al.  Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface , 2007 .

[119]  S. Kim,et al.  Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux , 2007 .

[120]  C. Chon,et al.  Effect of nanoparticle sizes and number densities on the evaporation and dryout characteristics for strongly pinned nanofluid droplets. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[121]  Yuwen Zhang,et al.  INTRODUCTION TO TRANSPORT PHENOMENA , 2006 .

[122]  Michael Jonathan QinetiQ Limited Pitkethly,et al.  Nanomaterials – the driving force , 2004 .

[123]  W. Roetzel,et al.  Pool boiling characteristics of nano-fluids , 2003 .

[124]  M. El-Sayed,et al.  Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals , 2000 .