On Zagreb indices of graphs

The first Zagreb index M1(G) is equal to the sum of squares of the degrees of the vertices, and the second Zagreb index M2(G) is equal to the sum of the products of the degrees of pairs of adjacent vertices of the underlying molecular graph G. In this paper, we obtain lower and upper bounds on the first Zagreb index M1(G) of G in terms of the number of vertices (n), number of edges (m), maximum vertex degree (Δ), and minimum vertex degree (δ). Using this result, we find lower and upper bounds on M2(G). Also, we present lower and upper bounds on $$M_2 (G) + M_2 (\bar G)$$ in terms of n, m, Δ, and δ, where $$\bar G$$ denotes the complement of G. Moreover, we determine the bounds on first Zagreb coindex $$\bar M_1 (G)$$ and second Zagreb coindex $$\bar M_2 (G)$$. Finally, we give a relation between the first Zagreb index and the second Zagreb index of graph G.

[1]  Kexiang Xu,et al.  A Unified Approach to Extremal Multiplicative Zagreb Indices for Trees, Unicyclic and Bicyclic Graphs ∗ , 2012 .

[2]  I. Gutman,et al.  Multiplicative Versions of First Zagreb Index , 2012 .

[3]  Bo Zhou,et al.  New upper bounds on Zagreb indices , 2009 .

[4]  Kinkar Ch. Das Sharp bounds for the sum of the squares of the degrees of a graph , 2003 .

[5]  Ali Reza Ashrafi,et al.  The Zagreb coindices of graph operations , 2010, Discret. Appl. Math..

[6]  H. Narumi,et al.  Simple Topological Index : A Newly Devised Index Characterizing The Topological Nature of Structural Isomers of Saturated Hydrocarbons , 1984 .

[7]  Bo Zhou,et al.  On reciprocal molecular topological index , 2008 .

[8]  Ivan Gutman,et al.  Some properties of the Narumi-Katayama index , 2012, Appl. Math. Lett..

[9]  Kexiang Xu,et al.  The Zagreb indices of graphs with a given clique number , 2011, Appl. Math. Lett..

[10]  S. Simić,et al.  Means and Their Inequalities , 1988 .

[11]  Dominique de Caen,et al.  An upper bound on the sum of squares of degrees in a graph , 1998, Discret. Math..

[12]  J. Spencer,et al.  On the mean distance between points of a graph , 1988 .

[13]  K. Das,et al.  On the multiplicative Zagreb coindex of graphs , 2013 .

[14]  D. Cvetkovic,et al.  Graph theory and molecular orbitals , 1974 .

[15]  N. Trinajstic,et al.  The Zagreb Indices 30 Years After , 2003 .

[16]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[17]  Siemion Fajtlowicz,et al.  On conjectures of Graffiti , 1988, Discret. Math..

[18]  Kexiang Xu,et al.  On Zagreb and Harary Indices , 2013 .

[19]  I. Gutman,et al.  Graph theory and molecular orbitals. XII. Acyclic polyenes , 1975 .

[20]  B. Horoldagva,et al.  On Comparing Zagreb Indices of Graphs , 2012 .

[21]  P. Dankelmann,et al.  Inverse degree and edge-connectivity , 2009, Discret. Math..

[22]  A. Balaban,et al.  Topological Indices for Structure-Activity Correlations , 1983, Steric Effects in Drug Design.

[23]  Piotr Biler,et al.  Problems in mathematical analysis , 1990 .

[24]  I. Gutman,et al.  Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons , 1972 .

[25]  Consonni,et al.  New Local Vertex Invariants and Molecular Descriptors Based on Functions of the Vertex Degrees , 2010 .

[26]  Huiqing Liu,et al.  Sharp Bounds for the Second Zagreb Index of Unicyclic Graphs , 2007 .

[27]  Kexiang Xu,et al.  Trees, Unicyclic, and Bicyclic Graphs Extremal with Respect to Multiplicative Sum Zagreb Index ∗ , 2012 .

[28]  Kexiang Xu,et al.  Maximizing the Zagreb indices of (n;m)-graphs 1 , 2014 .

[29]  D. S. Mitrinovic,et al.  Means and Their Inequalities , 1989, Int. J. Math. Math. Sci..

[30]  Peter Dankelmann,et al.  Diameter and inverse degree , 2008, Discret. Math..

[31]  Kinkar Chandra Das,et al.  Maximizing the sum of the squares of the degrees of a graph , 2004, Discret. Math..

[32]  Bo Zhou Upper bounds for the Zagreb indices and the spectral radius of series-parallel graphs , 2007 .

[33]  Roberto Todeschini,et al.  Handbook of Molecular Descriptors , 2002 .