Multi-baseline imaging: A vision for spaceborne SAR

This paper provides a vision for the future development of spaceborne SAR systems with multi-baseline imaging capability like polarimetric SAR interferometry (PolinSAR), tomography (TomoSAR) and holography (HoloSAR). The goal is to fill the multi-dimensional data space with additional information from acquisitions having different spatial or temporal baselines. Multi-baseline imaging opens the door for a new class of image products in spaceborne SAR. Well-known examples are across-track and along-track interferometry, which allow the measurement of surface topography, ground deformation, ocean currents as well as glacier movements. While across-track and along-track interferometry are well established techniques and have been widely used by current spaceborne SAR systems, PolinSAR, TomoSAR and HoloSAR are emerging techniques which are shaping the future development of spaceborne SAR. New mission concepts for multistatic SAR configurations with distributed and sparse arrays will pave the way for this development.

[1]  Kostas Papathanassiou,et al.  First demonstration of airborne SAR tomography using multibaseline L-band data , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[2]  Alberto Moreira,et al.  Fully Polarimetric High-Resolution 3-D Imaging With Circular SAR at L-Band , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Kamal Sarabandi,et al.  Microwave Radar and Radiometric Remote Sensing , 2013 .

[4]  I. Hajnsek,et al.  A tutorial on synthetic aperture radar , 2013, IEEE Geoscience and Remote Sensing Magazine.

[5]  Alberto Moreira,et al.  Analysis and optimization of multi-circular SAR for fully polarimetric holographic tomography over forested areas , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[6]  D. Massonnet,et al.  Imaging with Synthetic Aperture Radar , 2008 .

[7]  Konstantinos Papathanassiou,et al.  Single-baseline polarimetric SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[8]  Alberto Moreira,et al.  First 3-D Reconstructions of Targets Hidden Beneath Foliage by Means of Polarimetric SAR Tomography , 2012, IEEE Geoscience and Remote Sensing Letters.

[9]  G. Krieger,et al.  Spaceborne bi- and multistatic SAR: potential and challenges , 2006 .

[10]  Yves-Louis Desnos,et al.  Investigations with the Sentinel-1 Interferometric Wide Swath Mode , 2015 .

[11]  Konstantinos Papathanassiou,et al.  Estimating and understanding vertical structure of forests from multibaseline TanDEM-X Pol-InSAR data , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[12]  Andreas Reigber,et al.  A Data-Adaptive Compressed Sensing Approach to Polarimetric SAR Tomography of Forested Areas , 2013, IEEE Geosci. Remote. Sens. Lett..

[13]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[14]  Gerhard Krieger,et al.  TanDEM-X: The New Global DEM Takes Shape , 2014, IEEE Geoscience and Remote Sensing Magazine.

[15]  J. Zyl,et al.  Introduction to the Physics and Techniques of Remote Sensing , 2006 .

[16]  Jaime Hueso Gonzalez,et al.  TanDEM-X: A satellite formation for high-resolution SAR interferometry , 2007 .

[17]  Alberto Moreira,et al.  Polarimetric 3-D Reconstruction From Multicircular SAR at P-Band , 2012, IEEE Geoscience and Remote Sensing Letters.

[18]  Fabio Rocca,et al.  Permanent scatterers in SAR interferometry , 1999, Remote Sensing.

[19]  Xiao Xiang Zhu,et al.  SAR Tomography: an advanced tool for spaceborne 4D radar scanning with application to imaging and monitoring of cities and single buildings , 2012 .

[20]  Gerhard Krieger,et al.  Multidimensional Waveform Encoding: A New Digital Beamforming Technique for Synthetic Aperture Radar Remote Sensing , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Irena Hajnsek,et al.  Very-High-Resolution Airborne Synthetic Aperture Radar Imaging: Signal Processing and Applications , 2013, Proceedings of the IEEE.

[22]  K. Feigl,et al.  The displacement field of the Landers earthquake mapped by radar interferometry , 1993, Nature.