Arithmétique et algorithmique en algèbre linéaire exacte pour la bibliothèque LinBox. (Arithmetic and algorithmic in exact linear algebra for the LinBox library)

L'algebre lineaire numerique a connu depuis quelques decennies des developpements intensifs autant au niveau mathematique qu'informatique qui ont permis d'aboutir a de veritable standard logiciel comme BLAS ou LAPACK. Dans le cadre du calcul exact ou formel, la situation n'est pas aussi avancee, en particulier a cause de la diversite des problematiques et de la jeunesse des progres theoriques. Cette these s'inscrit dans une tendance recente qui vise a federer des codes performants provenant de bibliotheques specialisees au sein d'une unique plateforme de calcul. En particulier, l'emergence de bibliotheques robustes et portables comme GMP ou NTL pour le calcul exact s'avere etre un reel atout pour le developpement d'applications en algebre lineaire exacte. Dans cette these, nous etudions la faisabilite et la pertinence de la reutilisation de codes specialises pour developper une bibliotheque d'algebre lineaire exacte performante, a savoir la bibliotheque LinBox. Nous nous appuyons sur les mecanismes C++ de programmation generique (classes abtraites, classes templates) pour fournir une abstraction des composantes mathematiques et ainsi permettre le plugin de composants externes. Notre objectif est alors de concevoir et de valider des boites a outils generiques haut niveau dans LinBox pour l'implantation d'algorithmes en algebre lineaire exacte. En particulier, nous proposons des routines de calcul hybride "exact/numerique" pour des matrices denses sur un corps finis permettant d'approcher les performances obtenues par des bibliotheques numeriques comme LAPACK. A un plus haut niveau, ces routines nous permettent de valider la reutilisation de codes specifiques sur un probleme classique du calcul formel: la resolution de systemes lineaires diophantiens. La bibliotheque LinBox est disponible a www. Linalg. Org.

[1]  Erich Kaltofen,et al.  On Wiedemann's Method of Solving Sparse Linear Systems , 1991, AAECC.

[2]  James Demmel,et al.  Design, implementation and testing of extended and mixed precision BLAS , 2000, TOMS.

[3]  Robert T. Moenck,et al.  Approximate algorithms to derive exact solutions to systems of linear equations , 1979, EUROSAM.

[4]  Jack J. Dongarra,et al.  A set of level 3 basic linear algebra subprograms , 1990, TOMS.

[5]  Erich Kaltofen,et al.  Parallel algorithms for matrix normal forms , 1990 .

[6]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[7]  Erich Kaltofen,et al.  LINBOX: A GENERIC LIBRARY FOR EXACT LINEAR ALGEBRA , 2002 .

[8]  Victor Y. Pan,et al.  Acceleration of Euclidean Algorithm and Rational Number Reconstruction , 2003, SIAM J. Comput..

[9]  Emmanuel Thomé,et al.  Algorithmes de calcul de logarithmes discrets dans les corps finis , 2003 .

[10]  A. Storjohann Algorithms for matrix canonical forms , 2000 .

[11]  Tommy Färnqvist Number Theory Meets Cache Locality – Efficient Implementation of a Small Prime FFT for the GNU Multiple Precision Arithmetic Library , 2005 .

[12]  Erich Kaltofen,et al.  Black box linear algebra with the linbox library , 2002 .

[13]  Paul Barrett,et al.  Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor , 1986, CRYPTO.

[14]  V. Strassen Gaussian elimination is not optimal , 1969 .

[15]  Numerische Mathematik Exact Solution of Linear Equations Using P-Adie Expansions* , 2005 .

[16]  Christof Paar,et al.  Optimal Extension Fields for Fast Arithmetic in Public-Key Algorithms , 1998, CRYPTO.

[17]  Arne Storjohann,et al.  The shifted number system for fast linear algebra on integer matrices , 2005, J. Complex..

[18]  V. Pan TR-2003004: Superfast Algorithms for Singular Toeplitz/Hankel-like Matrices , 2003 .

[19]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[20]  D. Coppersmith Solving homogeneous linear equations over GF (2) via block Wiedemann algorithm , 1994 .

[21]  Gilles Villard,et al.  On computing the determinant and Smith form of an integer matrix , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[22]  Oscar H. Ibarra,et al.  A Generalization of the Fast LUP Matrix Decomposition Algorithm and Applications , 1982, J. Algorithms.

[23]  Douglas H. Wiedemann Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.

[24]  Costas S. Iliopoulos,et al.  Worst-Case Complexity Bounds on Algorithms for Computing the Canonical Structure of Finite Abelian Groups and the Hermite and Smith Normal Forms of an Integer Matrix , 1989, SIAM J. Comput..

[25]  B. David Saunders,et al.  Certifying inconsistency of sparse linear systems , 1998, ISSAC '98.

[26]  S. Cook,et al.  ON THE MINIMUM COMPUTATION TIME OF FUNCTIONS , 1969 .

[27]  Leslie E. Trotter,et al.  Hermite Normal Form Computation Using Modulo Determinant Arithmetic , 1987, Math. Oper. Res..

[28]  Fabrice Rouillier,et al.  An environment for Symbolic and Numeric Computation , 2002 .

[29]  Jean-Guillaume Dumas,et al.  Finite field linear algebra subroutines , 2002, ISSAC '02.

[30]  Thom Mulders,et al.  Certified sparse linear system solving , 2004, J. Symb. Comput..

[31]  Erich Kaltofen,et al.  Analysis of Coppersmith's Block Wiedemann Algorithm for the Parallel Solution of Sparse Linear Systems , 1993, AAECC.

[32]  Claude-Pierre Jeannerod,et al.  On the complexity of polynomial matrix computations , 2003, ISSAC '03.

[33]  Jean-Guillaume Dumas,et al.  Efficient dot product over word-size finite fields , 2004, ArXiv.

[34]  G. Villard A study of Coppersmith's block Wiedemann algorithm using matrix polynomials , 1997 .

[35]  Arne Storjohann,et al.  Near optimal algorithms for computing Smith normal forms of integer matrices , 1996, ISSAC '96.

[36]  Erich Kaltofen,et al.  On the complexity of computing determinants , 2001, computational complexity.

[37]  B. David Saunders,et al.  Smith normal form of dense integer matrices fast algorithms into practice , 2004, ISSAC '04.

[38]  David R. Musser,et al.  STL tutorial and reference guide - C++ programming with the standard template library , 1996, Addison-Wesley professional computing series.

[39]  Thierry Gautier Calcul formel et parallélisme : conception du système GIVARO et applications au calcul dans les extensions algébriques , 1996 .

[40]  Jean-Guillaume Dumas,et al.  FFPACK: finite field linear algebra package , 2004, ISSAC '04.

[41]  Anatolij A. Karatsuba,et al.  Multiplication of Multidigit Numbers on Automata , 1963 .

[42]  Jean-Guillaume Dumas,et al.  On Efficient Sparse Integer Matrix Smith Normal Form Computations , 2001, J. Symb. Comput..

[43]  Arne Storjohann,et al.  Certified dense linear system solving , 2004, J. Symb. Comput..

[44]  Arne Storjohann,et al.  Fast Algorithms for for Linear Algebra Modulo N , 1998, ESA.

[45]  Jean-Guillaume Dumas,et al.  On parallel block algorithms for exact triangularizations , 2002, Parallel Comput..

[46]  Jean-Guillaume Dumas,et al.  Algorithmes parallèles efficaces pour le calcul formel : algèbre linéaire creuse et extensions algébriques. (Efficient parallel algorithm for computer algebra : sparce linear algebra and algebraic extensions) , 2000 .

[47]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[48]  Bruce W. Char,et al.  Symbolic computation in Java: an appraisement , 1999, ISSAC '99.

[49]  Joachim von zur Gathen,et al.  Functional Decomposition of Polynomials: The Wild Case , 1990, J. Symb. Comput..

[50]  Jack J. Dongarra,et al.  Automated empirical optimizations of software and the ATLAS project , 2001, Parallel Comput..

[51]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[52]  Larry J. Stockmeyer,et al.  On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials , 1973, SIAM J. Comput..

[53]  Victor Y. Pan,et al.  Fast rectangular matrix multiplications and improving parallel matrix computations , 1997, PASCO '97.

[54]  Paul Althaus Smith,et al.  Pure and applied mathematics; : a series of monographs and textbooks. , 2003 .

[55]  Mark Giesbrecht,et al.  Efficient parallel solution of sparse systems of linear diophantine equations , 1997, PASCO '97.

[56]  Isak Jonsson,et al.  Recursive Blocked Data Formats and BLAS's for Dense Linear Algebra Algorithms , 1998, PARA.

[57]  Paul S. Wang,et al.  A p-adic algorithm for univariate partial fractions , 1981, SYMSAC '81.