Bayesian evaluation of inequality and equality constrained hypotheses for contingency tables.

In this article, a Bayesian model selection approach is introduced that can select the best of a set of inequality and equality constrained hypotheses for contingency tables. The hypotheses are presented in terms of cell probabilities allowing researchers to test (in)equality constrained hypotheses in a format that is directly related to the data. The proposed method is investigated by several simulation studies and shows good performance. Software that allows researchers to apply the Bayesian approach to their own data is also provided.

[1]  Jay I. Myung,et al.  A Bayesian approach to testing decision making axioms , 2005 .

[2]  L. Wasserman,et al.  Computing Bayes Factors Using a Generalization of the Savage-Dickey Density Ratio , 1995 .

[3]  P. Sen,et al.  Constrained Statistical Inference: Inequality, Order, and Shape Restrictions , 2001 .

[4]  G. Koch,et al.  Analysis of categorical data by linear models. , 1969, Biometrics.

[5]  P. Carrington,et al.  The Effect of Prior Youth Court Dispositions on Current Disposition: An Application of Societal-Reaction Theory , 2001 .

[6]  Jim Albert,et al.  Estimation in Contingency Tables Using Prior Information , 1983 .

[7]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[8]  J. Kalbfleisch Statistical Inference Under Order Restrictions , 1975 .

[9]  E. Wagenmakers A practical solution to the pervasive problems ofp values , 2007, Psychonomic bulletin & review.

[10]  Jeroen K. Vermunt,et al.  Testing log-linear models with inequality constraints : A comparison of asymptotic, bootstrap, and posterior predictive P values , 2005 .

[11]  Adrian F. M. Smith,et al.  Bayesian Analysis of Constrained Parameter and Truncated Data Problems , 1991 .

[12]  M. Moretti,et al.  Suicidal ideation in an adolescent clinical sample: attachment patterns and clinical implications. , 1998, Journal of adolescence.

[13]  J. Vermunt,et al.  Likelihood-ratio tests for order-restricted log-linear models: A comparison of asymptotic and bootstrap methods , 2002 .

[14]  Herbert Hoijtink,et al.  Posterior inference in the random intercept model based on samples obtained with Markov chain Monte Carlo methods , 2000, Comput. Stat..

[15]  K. Bartholomew Avoidance of Intimacy: An Attachment Perspective , 1990 .

[16]  I. J. Myung,et al.  The Importance of Complexity in Model Selection. , 2000, Journal of mathematical psychology.

[17]  George Karabatsos,et al.  Order-Constrained Bayes Inference for Dichotomous Models of Unidimensional Nonparametric IRT , 2004 .

[18]  J. Berger,et al.  Testing a Point Null Hypothesis: The Irreconcilability of P Values and Evidence , 1987 .

[19]  M. Becker Models for the Analysis of Association in Multivariate Contingency Tables , 1989 .

[20]  H. Akaike A new look at the statistical model identification , 1974 .

[21]  Ioannis Ntzoufras,et al.  Bayesian estimation of unrestricted and order-restricted association models for a two-way contingency table , 2007, Comput. Stat. Data Anal..

[22]  M. Haber Maximum likelihood methods for linear and log-linear models in categorical data , 1985 .

[23]  F. T. Wright,et al.  Order restricted statistical inference , 1988 .

[24]  Peter Congdon Bayesian statistical modelling , 2002 .

[25]  Jeroen K. Vermunt,et al.  6. A General Class of Nonparametric Models for Ordinal Categorical Data , 1999 .

[26]  Morton B. Brown,et al.  Maximum likelihood methods for log-linear models when expected frequencies are subject to linear constraints , 1986 .

[27]  A. Agresti,et al.  Order-Restricted Score Parameters in Association Models for Contingency Tables , 1987 .

[28]  Herbert Hoijtink,et al.  Bayesian model selection using encompassing priors , 2005 .

[29]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[30]  R. Kass Bayes Factors in Practice , 1993 .

[31]  C. Dayton,et al.  Information criteria for pairwise comparisons. , 2003, Psychological methods.

[32]  A. Agresti Analysis of Ordinal Categorical Data , 1985 .

[33]  L. Joseph,et al.  Bayesian Statistics: An Introduction , 1989 .

[34]  J. Dickey,et al.  Bayes factors for independence in contingency tables , 1974 .

[35]  H. Hoijtink,et al.  Bayesian Evaluation of Informative Hypotheses. , 2008 .

[36]  N. Bowen,et al.  Sense of School Coherence, Perceptions of Danger at School, and Teacher Support Among Youth at Risk of School Failure , 1998 .

[37]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .

[38]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[39]  Carolyn J. Anderson The analysis of three-way contingency tables by three-mode association models , 1996 .

[40]  Jeroen K. Vermunt,et al.  The order-restricted association model: Two estimation algorithms and issues in testing , 2004 .

[41]  J. Berger,et al.  Testing Precise Hypotheses , 1987 .

[42]  A. Agresti,et al.  Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.

[43]  Herbert Hoijtink,et al.  Inequality constrained analysis of variance: a Bayesian approach. , 2005, Psychological methods.

[44]  J. Dickey The Weighted Likelihood Ratio, Linear Hypotheses on Normal Location Parameters , 1971 .