The GRAVITY young stellar object survey

51 Oph is a Herbig Ae/Be star that exhibits strong near-infrared CO ro-vibrational emission at 2.3 micron, most likely originating in the innermost regions of a circumstellar disc. We aim to obtain the physical and geometrical properties of the system by spatially resolving the circumstellar environment of the inner gaseous disc. We used the second-generation VLTI/GRAVITY to spatially resolve the continuum and the CO overtone emission. We obtained data over 12 baselines with the auxiliary telescopes and derive visibilities, and the differential and closure phases as a function of wavelength. We used a simple LTE ring model of the CO emission to reproduce the spectrum and CO line displacements. Our interferometric data show that the star is marginally resolved at our spatial resolution, with a radius of 10.58+-2.65 Rsun.The K-band continuum emission from the disc is inclined by 63+-1 deg, with a position angle of 116+-1 deg, and 4+-0.8 mas (0.5+-0.1 au) across. The visibilities increase within the CO line emission, indicating that the CO is emitted within the dust-sublimation this http URL modelling the CO bandhead spectrum, we derive that the CO is emitted from a hot (T=1900-2800 K) and dense (NCO=(0.9-9)x10^21 cm^-2) gas. The analysis of the CO line displacement with respect to the continuum allows us to infer that the CO is emitted from a region 0.10+-0.02 au across, well within the dust-sublimation radius. The inclination and position angle of the CO line emitting region is consistent with that of the dusty disc. Our spatially resolved interferometric observations confirm the CO ro-vibrational emission within the dust-free region of the inner disc. Conventional disc models exclude the presence of CO in the dust-depleted regions of Herbig AeBe stars. Ad hoc models of the innermost disc regions, that can compute the properties of the dust-free inner disc, are therefore required.

[1]  D. Lynden-Bell,et al.  The Evolution of viscous discs and the origin of the nebular variables. , 1974 .

[2]  J. Carr Near-infrared CO emission in young stellar objects , 1989 .

[3]  N. Calvet,et al.  Irradiation of Accretion Disks around Young Objects. I. Near-Infrared CO Bands , 1991 .

[4]  J. Carlstrom,et al.  Infrared CO Emission from Young Stars: Accretion Disks and Neutral Winds , 1995 .

[5]  Joan Najita,et al.  Kinematic Diagnostics of Disks around Young Stars: CO Overtone Emission from WL 16 and 1548C27 , 1996 .

[6]  M. Barlow,et al.  High-resolution spectroscopy of Vega-like stars — I. Effective temperatures, gravities and photospheric abundances , 1997 .

[7]  C. Corbally,et al.  The Incidence of λ Boötis Stars via an Extension of the MK Spectral Classification System to Very Young A-Type Stars , 1998 .

[8]  J. Cami,et al.  The composition of circumstellar gas and dust in 51 Oph , 2001, astro-ph/0102281.

[9]  C. Dominik,et al.  Passive Irradiated Circumstellar Disks with an Inner Hole , 2001, astro-ph/0106470.

[10]  L. Hartmann,et al.  Magnetospheres and Disk Accretion in Herbig Ae/Be Stars , 2004, astro-ph/0409008.

[11]  W. Thi,et al.  Evidence for an inner molecular disk around massive Young Stellar Objects , 2004, astro-ph/0410098.

[12]  The shape of the inner rim in proto-planetary disks , 2005, astro-ph/0503635.

[13]  E. Observatory,et al.  Evidence for a hot dust-free inner disk around 51 Oph , 2004, astro-ph/0412514.

[14]  D. Whelan,et al.  Near-IR CO Overtone Emission in 51 Ophiuchi , 2007 .

[15]  R. L. Akeson,et al.  Spectrally Dispersed K-Band Interferometric Observations of Herbig Ae/Be Sources: Inner Disk Temperature Profiles , 2006, astro-ph/0611447.

[16]  Romain G. Petrov,et al.  Near-infrared interferometry of eta Carinae with spectral resolutions of 1 500 and 12 000 using AMBER/VLTI , 2007 .

[17]  D. Schertl,et al.  The origin of hydrogen line emission for five Herbig Ae/Be stars spatially resolved by VLTI/AMBER spectro-interferometry , 2008, 0807.1119.

[18]  E. Tatulli,et al.  Spatially resolving the hot CO around the young Be star 51 Ophiuchi , 2008, 0806.4937.

[19]  C. Dominik,et al.  The inner rim structures of protoplanetary discs , 2009, 0908.1692.

[20]  P. Capak,et al.  THE 2008 EXTREME OUTBURST OF THE YOUNG ERUPTIVE VARIABLE STAR EX LUPI , 2010, 1007.4178.

[21]  J. D. Monnier,et al.  The Inner Regions of Protoplanetary Disks , 2010, 1006.3485.

[22]  B. Merín,et al.  Accretion rates and accretion tracers of Herbig Ae/Be stars , 2011, 1109.3288.

[23]  D. Schertl,et al.  VLTI/AMBER spectro-interferometry of the Herbig Be star MWC 297 with spectral resolution 12 000 , 2011, 1101.3695.

[24]  S. Kraus,et al.  Investigating the inner discs of Herbig Ae/Be stars with CO bandhead and Brγ emission , 2014, 1409.4897.

[25]  S. Kraus,et al.  A resolved, au-scale gas disk around the B[e] star HD 50138 , 2014, 1409.7394.

[26]  Laboratoire Lagrange,et al.  AMBER/VLTI high spectral resolution observations of the Brγ emitting region in HD 98922 - A compact disc wind launched from the inner disc region , 2015, 1508.00798.

[27]  Gerd Weigelt,et al.  Probing the accretion-ejection connection with VLTI/AMBER. High spectral resolution observations of the Herbig Ae star HD 163296 , 2015, 1502.03027.

[28]  D. Mourard,et al.  The peculiar fast-rotating star 51 Ophiuchi probed by VEGA/CHARA , 2015, 1709.04872.

[29]  B. Lazareff,et al.  Structure of Herbig AeBe disks at the milliarcsecond scale: A statistical survey in the H band using PIONIER-VLTI , 2016, 1611.08428.

[30]  G. Mace,et al.  IGRINS SPECTROSCOPY OF CLASS I SOURCES: IRAS 03445+3242 AND IRAS 04239+2436 , 2016, 1605.07261.

[31]  L. Testi,et al.  X-shooter spectroscopy of young stellar objects in Lupus. Accretion properties of class II and transitional objects , 2016, 1612.07054.

[32]  S. Lumsden,et al.  Medium-resolution near-infrared spectroscopy of massive young stellar objects , 2017, 1709.03994.

[33]  S. Rabien,et al.  First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer , 2017, 1705.02345.

[34]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[35]  S. Rabien,et al.  The GRAVITY Young Stellar Object survey. I. Probing the disks of Herbig Ae/Be stars in terrestrial orbits , 2019, 1911.00611.

[36]  University College Dublin,et al.  Exploring the dimming event of RW Aurigae A through multi-epoch VLT/X-shooter spectroscopy , 2019, Astronomy & Astrophysics.

[37]  P. Lucas,et al.  Short- and long-term near-infrared spectroscopic variability of eruptive protostars from VVV , 2019, Monthly Notices of the Royal Astronomical Society.

[38]  A. Tielens,et al.  Probing planet formation and disk substructures in the inner disk of Herbig Ae stars with CO rovibrational emission , 2019, Astronomy & Astrophysics.

[39]  P. T. de Zeeuw,et al.  The GRAVITY young stellar object survey. II. First spatially resolved observations of the CO bandhead emission in a high-mass YSO , 2020, 2003.05404.