暂无分享,去创建一个
Qin Li | Stephen J. Wright | Ke Chen | Jianfeng Lu | Qin Li | K. Chen | Jianfeng Lu | Ke Chen
[1] G. Plass,et al. Radiative transfer in an atmosphere-ocean system. , 1969, Applied optics.
[2] C. Bardos,et al. DIFFUSION APPROXIMATION AND COMPUTATION OF THE CRITICAL SIZE , 1984 .
[3] E. Larsen,et al. Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes II , 1989 .
[4] C. DeWitt-Morette,et al. Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .
[5] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .
[6] V. Agoshkov. Boundary Value Problems for Transport Equations , 1998 .
[7] Shi Jin,et al. Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..
[8] Laurent Dumas,et al. Homogenization of Transport Equations , 2000, SIAM J. Appl. Math..
[9] T. Goudon,et al. Diffusion approximation in heterogeneous media , 2001 .
[10] A. Klose,et al. Optical tomography using the time-independent equation of radiative transfer-Part 1: Forward model , 2002 .
[11] T. Goudon,et al. Homogenization and Diffusion Asymptotics of the Linear Boltzmann Equation , 2003 .
[12] E. Weinan,et al. Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .
[13] E. Candès,et al. Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.
[14] Mario Bebendorf,et al. Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems , 2008 .
[15] Luc Mieussens,et al. A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit , 2008, SIAM J. Sci. Comput..
[16] Shi Jin. ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW , 2010 .
[17] Houman Owhadi,et al. A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..
[18] P. Degond. Asymptotic-Preserving Schemes for Fluid Models of Plasmas , 2011, 1104.1869.
[19] Robert Lipton,et al. Optimal Local Approximation Spaces for Generalized Finite Element Methods with Application to Multiscale Problems , 2010, Multiscale Model. Simul..
[20] Per-Gunnar Martinsson,et al. A Fast Randomized Algorithm for Computing a Hierarchically Semiseparable Representation of a Matrix , 2011, SIAM J. Matrix Anal. Appl..
[21] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[22] N. Crouseilles,et al. An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits. , 2011 .
[23] Naoufel Ben Abdallah,et al. Diffusion and Homogenization Limits with Separate Scales , 2012, Multiscale Model. Simul..
[24] Jianlin Xia,et al. Randomized Sparse Direct Solvers , 2013, SIAM J. Matrix Anal. Appl..
[25] Giacomo Dimarco,et al. Numerical methods for kinetic equations* , 2014, Acta Numerica.
[26] W. Hackbusch,et al. Hierarchical Matrices: Algorithms and Analysis , 2015 .
[27] Yalchin Efendiev,et al. Sparse Generalized Multiscale Finite Element Methods and their applications , 2015, 1506.08509.
[28] Victor M. Calo,et al. Randomized Oversampling for Generalized Multiscale Finite Element Methods , 2014, Multiscale Model. Simul..
[29] Lei Wu,et al. Geometric Correction in Diffusive Limit of Neutron Transport Equation in 2D Convex Domains , 2016, 1605.02362.
[30] Qin Li,et al. Implicit Asymptotic Preserving Method for Linear Transport Equations , 2016, 1602.00746.
[31] Qin Li,et al. Validity and Regularization of Classical Half-Space Equations , 2016, 1606.01311.
[32] Robert Lipton,et al. Uncertain loading and quantifying maximum energy concentration within composite structures , 2016, J. Comput. Phys..
[33] S. Barcza,et al. Greenhouse effect from the point of view of radiative transfer , 2016, Acta Geodaetica et Geophysica.
[34] Yalchin Efendiev,et al. REITERATED MULTISCALE MODEL REDUCTION USING THE GENERALIZED MULTISCALE FINITE ELEMENT METHOD , 2016 .
[35] Gorjan Alagic,et al. #p , 2019, Quantum information & computation.
[36] Qin Li,et al. An Asymptotic Preserving Method for Transport Equations with Oscillatory Scattering Coefficients , 2017, Multiscale Model. Simul..
[37] Qin Li,et al. Asymptotic-Preserving Schemes for Multiscale Hyperbolic and Kinetic Equations , 2017 .
[38] Kathrin Smetana,et al. Randomized Local Model Order Reduction , 2017, SIAM J. Sci. Comput..
[39] Ralf Kornhuber,et al. An analysis of a class of variational multiscale methods based on subspace decomposition , 2016, Math. Comput..
[40] Stephen J. Wright,et al. Random Sampling and Efficient Algorithms for Multiscale PDEs , 2018, SIAM J. Sci. Comput..
[41] Eric T. Chung,et al. Generalized Multiscale Finite Element Method for the Steady State Linear Boltzmann Equation , 2019, Multiscale Model. Simul..