A unified global height reference system as a basis for IGGOS

Abstract The definition of a global height reference system is based on a mean sea surface, gravity field parameters, and a three-dimensional terrestrial reference frame (TRF). Tide gauge records, satellite altimetry, gravity measurements on Earth and from space, TRF coordinates, and spirit levelling have to be combined for the realization of the vertical reference frame. Observations and parameters have to be consistent with respect to the used standards, conventions and models. They have to provide globally unified reference surfaces (geoid or quasigeoid, respectively, and mean sea surface). The continental reference systems of Europe (EUREF, ECGN) and South America (SIRGAS) are considering these requirements in their strategies. They are presented here, and slightly different definitions and realizations for a globally unified height reference system are discussed.

[1]  W. Augath,et al.  The European Vertical Reference System (EVRS), Its relation to a World Height System and to the ITRS , 2002 .

[2]  R. Rapp,et al.  Mean sea surface and geoid gradient comparisons with TOPEX altimeter data , 1994 .

[3]  M. Popov,et al.  Computation of Ray Amplitudes in Inhomogeneous Media with Curved , 2002 .

[4]  M. Burṥa,et al.  On The Determination Of The Earth's Model – The Mean Equipotential Surface , 1998 .

[5]  T. Baker,et al.  Validating Earth and ocean tide models using tidal gravity measurements , 2003 .

[6]  Gary T. Mitchum,et al.  Improved determination of global mean sea level variations using TOPEX/POSEIDON altimeter data , 1997 .

[7]  W. Augath,et al.  The Vertical Reference System for Europe , 2002 .

[8]  J. Kouba,et al.  World Height System Specified by Geopotential at Tide Gauge Stations , 2002 .

[9]  Gerhard Beutler,et al.  Integrated Global Geodetic Observing System (IGGOS): A Candidate IAG Project , 2002 .

[10]  J. Kouba,et al.  Mean Earth'S Equipotential Surface From Topex/Poseidon Altimetry , 1998 .

[11]  T. Baker Absolute sea level measurements, climate change and vertical crustal movements , 1993 .

[12]  O. Heidbach,et al.  Deformation of the South American Crust Estimated from Finite Element and Collocation Methods , 2005 .

[13]  F. Galban,et al.  The Vertical Reference System in the Argentine Republic , 2002 .

[14]  M. I. Yurkina Gravity potential at the Major Vertical Datum as primary geodetic constant , 1996 .

[15]  Separation between reference surfaces of selected vertical datums , 1994 .

[16]  J. Kouba,et al.  Earth's Dimension Specified by Geoidal Geopotential , 2002 .

[17]  Laura Sánchez,et al.  Approach to the New Vertical Reference System for Colombia , 2002 .

[18]  D. Blitzkow,et al.  Connection of the Vertical Control Networks of Venezuela, Brazil and Colombia , 2002 .

[19]  Carine Bruyninx,et al.  Development of a European Combined Geodetic Network (ECGN) , 2005 .

[20]  Laura Sánchez,et al.  Scientific Foundations of the SIRGAS Vertical Reference System , 2001 .

[21]  N. Balasubramania Definition and Realization of a Global Vertical Datum , 1994 .

[22]  H. Drewes,et al.  The Vertical Reference Frame for the Americas — The Sirgas 2000 GPS Campaign — , 2002 .

[23]  R. Hipkin Is there a need for a Geodetic Datum 2000? Discussion of a “Heiskanen & Moritz’ Proposition” , 2002 .