Robust Satisfiability of Systems of Equations

We study the problem of robust satisfiability of systems of nonlinear equations, namely, whether for a given continuous function f:K → Rn on a finite simplicial complex K and α>0, it holds that each function g:K → Rn such that ║g−f║∞ ≤ α, has a root in K. Via a reduction to the extension problem of maps into a sphere, we particularly show that this problem is decidable in polynomial time for every fixed n, assuming dim K ≤ 2n−3. This is a substantial extension of previous computational applications of topological degree and related concepts in numerical and interval analysis. Via a reverse reduction, we prove that the problem is undecidable when dim K ≥ 2n−2, where the threshold comes from the stable range in homotopy theory. For the lucidity of our exposition, we focus on the setting when f is simplexwise linear. Such functions can approximate general continuous functions, and thus we get approximation schemes and undecidability of the robust satisfiability in other possible settings.

[1]  Journal für die reine und angewandte Mathematik , 1893 .

[2]  A. Dold Lectures on Algebraic Topology , 1972 .

[3]  C. Rourke,et al.  Introduction to Piecewise-Linear Topology , 1972 .

[4]  Robin B. S. Brooks,et al.  Certain Subgroups of the Fundamental Group and the Number of Roots of f(x) = a , 1973 .

[5]  Paul S. Wang The Undecidability of the Existence of Zeros of Real Elementary Functions , 1974, JACM.

[6]  David Eisenbud,et al.  An Algebraic Formula for the Degree of a C ∞ Map Germ , 1977 .

[7]  L. B. Rall A Comparison of the Existence Theorems of Kantorovich and Moore , 1980 .

[8]  John R. Harper,et al.  Algebraic topology : a first course , 1982 .

[9]  M. Postnikov Lectures in algebraic topology , 1983 .

[10]  A. Neumaier Interval methods for systems of equations , 1990 .

[11]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[12]  J. Cronin Fixed points and topological degree in nonlinear analysis , 1995 .

[13]  William Fulton Algebraic Topology: A First Course , 1995 .

[14]  Adam Grabowski,et al.  Introduction to the Homotopy Theory , 1997 .

[15]  Zbigniew Szafraniec Topological degree and quadratic forms , 1999 .

[16]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[17]  RobertF Brown,et al.  Nielsen root theory and Hopf degree theory , 2001 .

[18]  Nicholas J. Higham,et al.  Accuracy and stability of numerical algorithms, Second Edition , 2002 .

[19]  R. Forman A USER'S GUIDE TO DISCRETE MORSE THEORY , 2002 .

[20]  R. Baker Kearfott,et al.  Existence verification for singular and nonsmooth zeros of real nonlinear systems , 2003, Math. Comput..

[21]  R. Baker Kearfott,et al.  Existence Verification for Higher Degree Singular Zeros of Nonlinear Systems , 2003, SIAM J. Numer. Anal..

[22]  Philippe Réfrégier,et al.  Statistical Image Processing Techniques for Noisy Images: An Application-Oriented Approach , 2003 .

[23]  Philippe Réfrégier,et al.  Statistical Image Processing Techniques for Noisy Images , 2004, Springer US.

[24]  U. Koschorke Nielsen coincidence theory in arbitrary codimensions , 2004, math/0408044.

[25]  Bruno Lang,et al.  A Comparison of the Moore and Miranda Existence Tests , 2004, Computing.

[26]  Daciberg Lima Gonçalves,et al.  Wecken property for roots , 2005 .

[27]  A. Frommer,et al.  Symbolic–Numeric Techniques for Solving Nonlinear Systems , 2005 .

[28]  Bruno Lang,et al.  Existence Tests for Solutions of Nonlinear Equations Using Borsuk's Theorem , 2005, SIAM J. Numer. Anal..

[29]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[30]  A. Frommera,et al.  Proving the existence of zeros using the topological degree and interval arithmetic , 2006 .

[31]  U. Koschorke Selfcoincidences and roots in Nielsen theory , 2007, 1002.3613.

[32]  V. Prasolov Elements of Homology Theory , 2007 .

[33]  Petrus H. Potgieter,et al.  Computable counter-examples to the Brouwer fixed-point theorem , 2008, 0804.3199.

[34]  Pieter Collins Computability and Representations of the Zero Set , 2008, Electron. Notes Theor. Comput. Sci..

[35]  Martin C. Tangora,et al.  Cohomology Operations and Applications in Homotopy Theory , 2008 .

[36]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[37]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[38]  Herbert Edelsbrunner,et al.  The Robustness of Level Sets , 2010, ESA.

[39]  Frédéric Chazal,et al.  Computing the Robustness of Roots , 2010 .

[40]  Matemática A¹ homotopy theory , 2010 .

[41]  Herbert Edelsbrunner,et al.  Quantifying Transversality by Measuring the Robustness of Intersections , 2009, Found. Comput. Math..

[42]  Frédéric Chazal,et al.  Computing well diagrams for vector fields on Rn , 2012, Appl. Math. Lett..

[43]  Andrew P. Smith Enclosure Methods for Systems of Polynomial Equations and Inequalities , 2012 .

[44]  Mark de Longueville,et al.  A Course in Topological Combinatorics , 2012 .

[45]  Luk'avs Vokvr'inek,et al.  Decidability of the extension problem for maps into odd-dimensional spheres , 2014, 1401.3758.

[46]  Paul Rosen,et al.  2D Vector Field Simplification Based on Robustness , 2014, 2014 IEEE Pacific Visualization Symposium.

[47]  Jirí Matousek,et al.  Extendability of Continuous Maps Is Undecidable , 2013, Discret. Comput. Geom..

[48]  Jean-Philippe Vial,et al.  Robust Optimization , 2021, ICORES.

[49]  Jirí Matousek,et al.  Polynomial-Time Computation of Homotopy Groups and Postnikov Systems in Fixed Dimension , 2012, SIAM J. Comput..

[50]  Stefan Ratschan,et al.  Quasi-decidability of a Fragment of the First-Order Theory of Real Numbers , 2013, Journal of Automated Reasoning.

[51]  Stefan Ratschan,et al.  Effective topological degree computation based on interval arithmetic , 2012, Math. Comput..

[52]  Robert Kohl,et al.  An Introduction To Algebraic Topology , 2016 .

[53]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .

[54]  R. Ho Algebraic Topology , 2022 .