Spatial statistics and distributed estimation by robotic sensor networks

Networks of environmental sensors are playing an increasingly important role in scientific studies of the ocean, rivers, and the atmosphere. Robotic sensors can improve the efficiency of data collection, adapt to changes in the environment, and provide a robust response to individual failures. Their operation must be driven by statistically-aware algorithms that make the most of the network capabilities for data collection and fusion. At the same time, such algorithms need to be distributed and scalable to make robotic networks capable of operating in an autonomous and robust fashion. The combination of these two objectives, complex statistical modeling and distributed coordination, presents grand technical challenges: traditional statistical modeling and inference assume full availability of all measurements and central computation. While the availability of data at a central location is certainly a desirable property, the paradigm for distributed motion coordination builds on partial, fragmented information. This work surveys recent progress at bridging the gap between sophisticated statistical modeling and distributed motion coordination.

[1]  F. J. Alonso,et al.  The Kriged Kalman filter , 1998 .

[2]  Luc BAUWENS,et al.  Bayesian Methods , 2011 .

[3]  D. Teneketzis,et al.  Coordinator , 2020, EuroPLoP.

[4]  F. Pukelsheim Optimal Design of Experiments , 1993 .

[5]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[6]  James V. Zidek,et al.  Statistical Analysis of Environmental Space-Time Processes , 2006 .

[7]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  Naomi Ehrich Leonard,et al.  Cooperative Filters and Control for Cooperative Exploration , 2010, IEEE Transactions on Automatic Control.

[9]  Jorge Cortés,et al.  Cooperative adaptive sampling via approximate entropy maximization , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[10]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[11]  Erkki P. Liski,et al.  Topics in Optimal Design , 2002 .

[12]  Naomi Ehrich Leonard,et al.  Collective Motion, Sensor Networks, and Ocean Sampling , 2007, Proceedings of the IEEE.

[13]  Nigel G. Yoccoz,et al.  Hierarchical Modelling for the Environmental Sciences , 2007 .

[14]  David J. C. MacKay,et al.  Information-Based Objective Functions for Active Data Selection , 1992, Neural Computation.

[15]  Jorge Cortés,et al.  Asymptotic Optimality of Multicenter Voronoi Configurations for Random Field Estimation , 2009, IEEE Transactions on Automatic Control.

[16]  A. Czirók,et al.  Collective Motion , 1999, physics/9902023.

[17]  David A. Cohn,et al.  Neural Network Exploration Using Optimal Experiment Design , 1993, NIPS.

[18]  Muhammad F. Mysorewala,et al.  Simultaneous robot localization and mapping of parameterized spatio-temporal fields using multi-scale adaptive sampling , 2008 .

[19]  Marie A. Gaudard,et al.  Bayesian spatial prediction , 1999, Environmental and Ecological Statistics.

[20]  Claire J. Tomlin,et al.  Mobile Sensor Network Control Using Mutual Information Methods and Particle Filters , 2010, IEEE Transactions on Automatic Control.

[21]  Jorge Cortés,et al.  A cooperative deployment strategy for optimal sampling in spatiotemporal estimation , 2008, 2008 47th IEEE Conference on Decision and Control.

[22]  Jorge Cortes,et al.  Distributed sampling of random fields with unknown covariance , 2009, 2009 American Control Conference.

[23]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[24]  F.L. Lewis,et al.  Robotic deployment for environmental sampling applications , 2005, 2005 International Conference on Control and Automation.

[25]  Robert B. Gramacy,et al.  Bayesian treed gaussian process models , 2005 .

[26]  Sonia Martínez,et al.  Distributed Interpolation Schemes for Field Estimation by Mobile Sensor Networks , 2010, IEEE Transactions on Control Systems Technology.

[27]  J. I The Design of Experiments , 1936, Nature.

[28]  Blaza Toman,et al.  Bayesian Experimental Design , 2006 .

[29]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[30]  Randy A. Freeman,et al.  Decentralized Environmental Modeling by Mobile Sensor Networks , 2008, IEEE Transactions on Robotics.

[31]  Naomi Ehrich Leonard,et al.  Exploring scalar fields using multiple sensor platforms: Tracking level curves , 2007, 2007 46th IEEE Conference on Decision and Control.

[32]  B. Mallick,et al.  Analyzing Nonstationary Spatial Data Using Piecewise Gaussian Processes , 2005 .

[33]  James G. Bellingham,et al.  Performance metrics for oceanographic surveys with autonomous underwater vehicles , 2001 .

[35]  Michael A. Demetriou,et al.  Estimation of Spatially Distributed Processes Using Mobile Spatially Distributed Sensor Network , 2009, SIAM J. Control. Optim..

[36]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[37]  Jorge Cortés,et al.  Distributed Kriged Kalman Filter for Spatial Estimation , 2009, IEEE Transactions on Automatic Control.

[38]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[39]  Jeff Gill,et al.  What are Bayesian Methods , 2008 .

[40]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[41]  M. E. Johnson,et al.  Minimax and maximin distance designs , 1990 .

[42]  Sean P. Meyn Control Techniques for Complex Networks: Workload , 2007 .

[43]  P. Kitanidis Parameter Uncertainty in Estimation of Spatial Functions: Bayesian Analysis , 1986 .

[44]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[45]  Joonho Lee,et al.  Biologically-inspired navigation strategies for swarm intelligence using spatial Gaussian processes , 2008 .

[46]  Francesco Bullo,et al.  Coordination and Geometric Optimization via Distributed Dynamical Systems , 2003, SIAM J. Control. Optim..